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Abstract

In this paper, I measure the costs of environmental taxation of car ownership and usage
in Denmark. Using full population Danish register data covering 1997–2006, I estimate
a discrete-continuous model of car choice and usage that explicitly allows households to
select cars based on expected usage conditional on observed and unobserved heterogeneity. I
validate the model using a major Danish reform in 2007 which prompted a substantial shift
in the characteristics of purchased cars unique to the Danish setting compared to the rest of
Europe. Through counterfactual simulations, I find that both Danish reforms in 1997 and
2007 were cost-ine�ective at reducing CO2 emissions compared to a fuel tax. Moreover, I
find that the diesel market share responds strongly to taxation but that environmental goals
can be reached both with and without a large diesel share in the fleet.
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1 Introduction

Since 1980, greenhouse gas emissions from the Danish transport sector have increased from 10 to
15 mio tons CO2 annually while all remaining sectors together have reduced emissions from 55 to
30 mio tons. In Denmark as well as the rest of the developed world, a consensus is emerging that
emissions from the transport sector must be decreased if environmental goals are to be reached.
The goal of this paper is to measure the cost-e�ectiveness of environmentally motivated tax
policies that have targeted car choice and use.

Towards this end, I estimate a structural 2-period discrete-continuous model of new car pur-
chase and subsequent usage by Danish households. My dataset covers all new car purchases
for the period 1997–2006 as well as subsequent driving over a 4-year period and detailed demo-
graphics from the Danish registers. In 2007, a major Danish reform was implemented, followed
by substantial changes in the characteristics of newly purchased cars. In particular, the diesel
share of new cars in Denmark increased remarkably compared with other European countries
at that time. My sample period stops before the reform but I know the response from external
sources and can use this to validate my model.

My results contribute to the understanding of the costs of environmental car taxation. The
model gives predictions on car choices and subsequent driving, allowing me to analyze the
impact of counterfactual policy scenarios on tax revenue, substitutions in the new car market,
total driving, fuel demand and CO2 emissions. I find that a simple fuel tax would have been
more e�cient per ton of CO2 than both the 1997 and 2007 reforms were. Other studies found
fuel taxes to be more e�ective compared with taxes that target car characteristics (Grigolon,
Reynaert, and Verboven, 2015) and with emissions standards (Jacobsen, 2013).

I also contribute with new insights regarding the increasing diesel share. This has received
attention by policy makers as awareness has increased about the negative health e�ects of lo-
cal air pollution from diesel cars.1 A key descriptive fact is that diesel car drivers tend to
drive on average 60.0% more than gasoline car drivers. I therefore estimate a high-dimensional
discrete-continuous model that explicitly accounts for selection based on observed and unob-
served heterogeneity in driving. To my knowledge, I am the first to empirically explore the rise
in the diesel share accounting for endogeneous selection. My findings indicate that the diesel
share is highly sensitive to the way that car taxes discriminate between gasoline and diesel cars.
Environmentally motivated car taxes tend to target the fuel e�ciency but must correct for the
inherently higher e�ciency of diesel cars. I show that the diesel cars are neither necessary nor
su�cient for environmental goals. To shed light on what the diesel would be in absence of
discriminatory taxation based on fuel type, I counterfactually equalize car taxes and fuel taxes
for gasoline and diesel cars and find a level slightly higher than that in 2006, but lower than for
most other European countries.

My findings complement existing knowledge on car choice and usage due to the unique nature
of my setting; by studying a small open economy without domestic car production and using a
reform to explore the validity of the model, I can address some of the issues that are inherent
in many of the classic studies of car taxation. Firms respond to car tax policies for example by

1In 2012, the World Health Organization moved diesel exhaust to their list of carcinogens — substances that
are definitely known to cause lung cancer.
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changing their portfolios (Reynaert, 2014). Policies that a�ect a small market such as the Danish
will tend to provide a smaller incentive for automakers to change their portfolios, reducing this
supply side concern. Similarly, the market is too small for shocks that are unique to Denmark
to a�ect global fuel prices.

There may, however, still issues with common demand shocks across countries, such as
increasing urbanization. Therefore, another strength is the access to full population detailed
register data, including demographic information on work distance, income. In addition to
accounting for changing urbanization patterns, this allows me to model household driving very
precisely. Thereby, I can also give an accurate estimate of the response in driving to an exogenous
increase in fuel e�ciency (the so-called rebound e�ect), which has been widely debated in the
literature (e.g. Small and Van Dender, 2007; Bento et al., 2009; Gillingham, 2012; Hymel and
Small, 2015). I estimate the rebound e�ect for Denmark to be –0.30.

The rest of the paper is organized as follows; Section 1.1 discusses the contributions from this
paper in the context of related literature. Section 2 presents the institutional setting and the
data and presents some preliminary descriptive evidence. Section 3 lays out the theoretical model
while Section 4 gives the empirical strategy for estimation and discusses identification. Section
5 presents the estimates and structural elasticities. Section 6 contains the counterfactual policy
simulations and section 7 concludes. Appendix A contains a list of the notation used throughout
the paper as well as the core equations of the structural model for easy reference.

1.1 Related Literature

I mainly contribute to the literature on the cost of environmental policies in the car market.
Recently, a number of papers have emphasized European settings. D’Haultfæuille, Givord, and
Boutin (2013) study the French Bonus/Malus reform of 2008 which is a feebate similar to the
Danish one. They find that the reform had a negative environmental impact, mainly because
it led to more cars being sold at the extensive margin. My model conditions on entry into the
new car market so I make no claims on the extensive margin results. Adamou, Clerides, and
Zachariadis (2013) counterfactually study the impact of a feebate, finding that the reform needs
to look more like a fee than a rebate in order to be optimal. Grigolon, Reynaert, and Verboven
(2015) find that fuel taxes are more e�cient than vehicle taxes in reducing fuel usage than taxes
working through the fuel e�ciency of cars. Using cross-country market-level data, they find that
discriminatory fuel taxes and di�erences in fuel e�ciency alone explain 40% of the di�erences
across countries. My results indicate that discriminatory ownership and purchase taxes may
well account for a substantial part of the remaining 60%. Mabit (2014) also uses Danish data
and analyzes the 2007 reform that is also under study in this paper and finds the changes in car
characteristics occurring in the period to be as important as the reform.

A number of other studies consider more small-scale reforms, typically a�ecting smaller
segments. These are generally found to be cost-ine�ective. Huse and Lucinda (2013) consider
a Swedish reform a�ecting only highly e�cient green cars using a BLP model. They find that
the implicit price of CO2-emissions from that reform was far above the social cost of carbon in
Sweden. Beresteanu and Li (2011) and Chandra, Gulati, and Kandlikar (2010) study incentive
schemes aimed at hybrid cars in the US and Canada and both find them to be cost-ine�ective.
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The papers cited above all target the demand side of the market but a large American
literature focuses on supply side instruments, primarily the Corporate Average Fuel Economy
(CAFE) standards. These require car makers to reach a certain weighted average fuel economy
across their sold cars, subject to a number of technical details. Goldberg (1998) is one early
study of CAFE standards utilizing joint modeling of car choice and usage, finding that policies
targeting the car choice are favorable to fuel taxes. Building on the framework by Bento et al.
(2009), recent work by Jacobsen (2013) compares the cost-e�ectiveness of CAFE standards
and fuel taxes, finding the latter to be the more e�ective. Reynaert (2014) and Clerides and
Zachariadis (2008) are among the few papers studying the e�ects of the European fuel economy
standards, announced in 2007 and to be fully binding by 2015. Reynaert (2014) focuses on
the responses of the European automakers, finding that they primarily respond by technology
adoption.

A di�erent strand of literature looks at the fuel type of the purchased cars, focusing on
the choice of diesel vs. gasoline. This is a much more prevalent option in the European than
the American context and the diesel market share increased substantially up through the early
1990’s, following the introduction of the direct injection or common rail technology. Miravete,
Moral, and Thurk (2014) study this in the Spanish setting, finding that the policy treatment of
diesel vs. gasoline in Europe functioned in e�ect as a subsidy to European car makers. On the
methodological side, Verboven (2002) uses within-model variation between car models that only
di�er in using gasoline or diesel fuel for identification in a BLP framework. Grigolon, Reynaert,
and Verboven (2015) also consider heterogeneity in driving but assume a zero fuel price elasticity
of driving. My paper is the first to my knowledge to study the dieselization while estimating
the driving decision simultaneously.

Endogenous selection of consumers into car types based on individual driving demand has
been emphasized in recent work. This paper builds on Gillingham (2012) who introduces endoge-
nous selection both based on observables, unobservables and explicitly on expectations about
future fuel prices. The model builds on Dubin and McFadden (1984). Some work has used 2-step
approaches to integrating type choice and usage (e.g. Goldberg 1998; West 2004; D’Haultfæuille,
Givord, and Boutin 2013), while more recent work has promoted simultaneous estimation (e.g.
Bento et al. 2009; Feng, Fullerton, and Gan 2013; Jacobsen 2013 and in particular Gillingham,
2012). The model explicitly accounts for the selection e�ect required to identify the so-called
rebound e�ect, namely the e�ect on driving of increasing fuel e�ciency (see e.g. Small and
Van Dender, 2007).

In terms of the data used, this paper is novel in applying micro data on car choice and usage
matched with household-level demographics for the full Danish population over a long period of
9 years. Many papers in the car demand literature have only used market-level data (e.g. Berry,
Levinsohn, and Pakes 1995; Miravete, Moral, and Thurk 2014; Reynaert 2014; Verboven 2002).
The papers using micro-level data either use survey data (West 2004; Bento et al. 2009; Jacobsen
2013), often with only a limited number of years, or do not observe household demographics at
the micro level (e.g. Gillingham, 2012).

Two major aspects of car demand that I do not tackle in this paper are multi-car households,
dynamics and myopia. Even though the data would allow it, I choose not to include 2-car
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households in this study.2 This is to make sure the choiceset in the model remains tractable.
Since only 12.1% of Danish households between 18 and 65 years own 2 or more cars, I capture
the largest segment this way (see Figure B.8).

A recent literature has looked at the question of whether consumers correctly take into
account future savings in fuel cost when making a car purchase.3 I make no claims to answering
this question but will follow the empirical work indicating that that consumers are rational and
time-consistent when they make their vehicle and driving decisions. However, I will allow some
flexibility in consumer expectations about future fuel prices.

Finally, some authors have emphasized the dynamics of vehicle ownership decisions, opting
for a fully dynamic structural model.4 While this facilitates the study of important aspects
such as the used-car market, scrappage and ownership durations one must trade o� complexity
elsewhere in the model and it is central to maintain a high-dimensional choiceset to accurately fit
in the e�ects of the policies considered. As most other non-dynamic papers, the model presented
in this paper conditions on entry into the new car market. If the reforms change substitutions
between the used and new car market, such e�ects will be ignored. In that sense, the focus of
this paper is purely on the substitution patterns in the car market.

2 Background and Data

In this section, I will first describe the institutional setting in Denmark, focusing on the taxation
of cars in the period. I then discuss the data, explaining the di�erent data sources and the
construction of the final dataset. Finally, I present descriptive evidence on car choice and
driving.

2.1 Institutional Setting

Car taxation in Denmark consists of three elements; a registration tax, a bi-annual ownership
tax and fuel taxes. The registration tax is paid at the time of purchase and is a linear function
of the purchase price with a kink,

·

reg
t

(pgross) = 1.05 · min(K
t

, p

gross) + 1.80 · max(0, p

gross ≠ K

t

),
2Some of the only studies focused on modeling multi-car households are Spiller (2012); Borger, Mulalic, and

Rouwendal (2013); Wakamori (2011). Bento et al. (2009) take a di�erent approach, considering each car as
a choice occasion. An alternative approach in my setting would be to ignore knowledge about other cars and
consider the two instances as independent or to add a control.

3The findings have been mixed with some support for myopia (Allcott and Wozny, 2012) and some against
(Busse, Knittel, and Zettelmeyer (2013); Sallee, West, and Fan (2010); Grigolon, Reynaert, and Verboven (2015)).
The interested reader is referred to the literature review by Greene (2010) which documents that there has been
extremely mixed evidence in the empirical literature. Another strand of literature emphasizes certain behavioral
aspects that I will not consider in this paper; Gallagher and Muehlegger (2011) find that tax incentives working
through the purchase price are more e�ective than ones working through income tax deductions, and Li, Linn,
and Muehlegger (2014) find that driving responds more strongly to fuel taxes than to changes in the fuel product
price.

4Many recent dynamic models build on the optimal replacement model by Rust (1987). These models are much
better suited to looking at issues like vehicle scrappage (Adda and Cooper, 2000; Schiraldi, 2011), and the used
car market (Adda and Cooper (2000); Schiraldi (2011); Chen, Esteban, and Shum (2010); Gavazza, Lizzeri, and
Rokestkiy (2014); Gillingham et al. (2013); Stolyarov (2002)Chen, Esteban, and Shum, 2010; Gavazza, Lizzeri,
and Rokestkiy, 2014; Stolyarov, 2002; Gillingham et al., 2013). Such issues are beyond the scope of this paper.
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where K

t

is a politically set kink, ·

reg
t

(·) denotes the registration tax and p

gross is the raw car
price including VAT (25%) but net of deductions.5 Consequently, taxes make up just over 160%
of the purchase price of the average Danish car. The second tax, ownership tax, is paid twice
a year and depends on the fuel e�ciency (in kilometers per liter, km/l) of the car according
to a schedule that is updated irregularly over the period and accounted for in the estimation.
There is a separate schedule for diesel cars where the tax rate is higher for any given level of
fuel e�ciency. This balances the fact that diesel cars on average have higher fuel e�ciency than
gasoline cars. The third tax element, fuel taxes, are comprised of a fixed and a proportional
component and the total fuel tax amounts to 68.0% of the gasoline price, averaged over my
sample period (58.5% for diesel). The composition of taxes and product price for the gasoline
and diesel prices are shown in Figure B.4.

There were two major reforms of interest in the sample period; A change in the bi-annual tax
in 1997 and a change in the registration tax in 2007. My data does not cover both before and
after either of these reforms. All cars first registered before July 1st 1997 have their bi-annual tax
rate set according to the weight (and still follow that scheme) while those first registered after
that date follow the fuel e�ciency. The 2007 reform was a so-called feebate, working through the
registration tax and giving a rebate to green cars and added a fee to ine�cient cars. The rebate
was DKK 4,000 per unit of km/l over the pivot (16 km/l for gasoline cars and 18 km/l for diesel
cars). The corresponding fee was slightly lower, at 1,000 DKK per km/l. Figure 2.1 shows the
prompt change in the fuel e�ciency of new cars after the reform is introduced and 2.2 shows an
even greater change in the diesel share of newly purchased cars. From the European Automobil
Dealer Association, I have access to the diesel share in other European countries, which is also
shown in 2.2, highlighting that the response was unique to Denmark.6

2.2 Data

The dataset contains all new cars purchased between July 1st 1997 and December 31st 2006
and is based on matched Danish administrative data. The car ownership information comes
from The Central Motor Register, which holds license plate ownership information. Driving
information comes from the mandatory safety inspection which all cars must attend four years
after purchase. At this test, it is evaluated whether the car is in safe condition and the odometer
is measured and recorded. Therefore, the driving data comes from a 4-year period following
purchase. Demographic informations on the car owners and the remainder of their household is
obtained by matching the personal identifier (CPR number) with the Danish registers. The most
important variable is the computed work distance measure (described in appendix B.3). This
measure captures the product of the work distance and the number of days that the individual
goes to work, regardless of the mode choice. Households are only eligible for the deduction
if they are working and their private address is further than 12 km from the address of their

5Deductions are given for example for installed safety equipment which are not observed in the data and
therefore ignored in this paper. Anecdotally, some deductions are larger than the cost of installing the equipment,
meaning that the equipment is universally adopted.

6I have been unable to get the similar fuel e�ciency numbers for other European countries. I expect that the
Danish response is unique in relation to the timing but that the general trend is certainly shared across countries.
The source for the Danish diesel share and average fuel e�ciency post-2007 is Statistics Denmark’s aggregate
statistics (statistikbanken.dk), but I do not have this information in my micro data.
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primary work place, which is the case for a little under half of the individuals. Appendix B.3.1
provides details on this unique variable.

A car type in the data is defined as a unique Vehicle Type Approval number. These are
identifiers assigned by the Ministry of Transportation when a car is approved for import and
sale in Denmark. They vary at a finer level than the traditional (make-model-year) in some
respects, since any change in the vehicle that might alter safety aspects of the car in operation
require a new approval for import. The identifier does not contain information on the make
year, however. Car characteristics are merged using this identifier. An important limitation of
the data is that I do not observe the age of the car; instead, I observe the year the car was
first registered in Denmark and use this to construct the age, assuming that the car is not an
imported used car. Imports of used cars are not a big problem for my setting because the high
Danish car taxes imply that the used-car prices are generally very high. I have access to new car
prices and depreciation rates are available from a dataset maintained by the Danish Automobile
Dealer Association (DAF). The depreciation rates are used by used car dealers in Denmark
when they make an o�er on a used car of a given age in normal condition and the new car prices
are merchant suggested retail prices (MSRPs). Fuel prices are available at the daily level from
the Danish Oil Industry Association (EOF; www.eof.dk). These prices are recommended retail
prices for the entire country so local variations and price wars do not show up in the data.7

In Appendix B.3.2, I show that the product prices of both types of fuel track international
oil prices very closely (Figure B.5). All tax rates are taken directly from the law texts using
www.retsinformation.dk with the exception of fuel taxes, that come from EOF.

As many of the classic car choice papers, the emphasis of this paper is on the new car market.
While car ownership is observed for used cars, prices and characteristics are only available for
cars purchased from 1997 and forward.

In order to evaluate the welfare consequences of the counterfactual policies, one needs a
measure of the marginal external costs of driving. These are taken from DTU Transport (2010)
and shown in Appendix B.2.8 The key thing to note about externalities is that the per-kilometer
externality of congestion and accidents are far larger than environmental externalities (this has
been emphasized by e.g. De Borger and Mayeres, 2007).

The final estimation sample contains N = 128, 910 new car purchases by Danish couples in
1997–2006. The sample selection is described in details in Appendix B.1. To ensure demographic
heterogeneity, I have selected only households consisting of couples. Adding singles could easily
be done but would require many additional parameters and they account for less than 20% of
all new purchases. I also deselect cars with missing observations as well as car types that are
purchased fewer than 30 times. The final dataset has a total of J = 1, 177 di�erent cars to
choose from. Even so, the choiceset facing a single household is much smaller than this because
no car was available in all sample years. Working with a choiceset of this high dimensionality in
a discrete choice setting is challenging but it allows me to implement and explore the tax system
very precisely.

7In the literature estimating the demand for driving, many papers rely on spatial variation in fuel prices for
identification. This would not be appropriate for Denmark, however, since the country is so small that it would
be hard to establish regions that would avoid trading across markets.

8I have recalculated from a per kilometer to per liter externality in terms of air pollution from CO2 and other
particle emissions.
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Figure 2.1: Fuel E�ciency of Newly Purchased Cars in Denmark
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Source: Statistics Denmark, avg. fuel efficiency of newly purchased cars.
The horizontal line marks the 2007 reform in April.
The dots show yearly averages over the middle date of the year.

2.3 Descriptive Evidence

In the period 1997–2006, the fuel e�ciency of newly purchased cars increased from just over 13
kilometers per liter (km/l) to 16 km/l, as shown in Figure 2.1. The figure furthermore shows
a sharp change occurring right when the Danish feebate of 2007 was implemented in 2007.
However, in the same period there was a drastic increase in diesel car sales, which made up 3.0%
of all new cars sold in 1997 but had increased to 26.3% by 2006. Furthermore, this number
increased to 38.4% in 2007. While the increasing trend over the period was shared by many
other European countries, where the average diesel share increased from 22.3% to 50.8%, the
jump in 2007 is absent for those countries. Figure 2.2 shows the diesel share of new purchases
for Denmark together with 4 other countries and the Western European average. The common
trend naturally opens the question of how much of the changes in characteristics was driven by
changes in demand, supply and policy.

Table 2.1 shows summary statistics for the estimation sample both in terms of cars and
households. Regarding average work distance variable, this is zero if the household has less than
12 km to work. The reported averages of 11.8 km for males and 8.12 for females are therefore
the averages of this censored variable.

To get a first grasp of the conditional correlations in the data, Figure B.13 shows the dis-
tribution of driving for gasoline car drivers and for diesel car drivers. The average gasoline car
drives 49.2 km per day while the average diesel car drives 78.8 km per day. This is confirmed
in Table B.4; the table shows regressions where car characteristics of the purchased vehicles
are regressed on the demographic variables of the households purchasing them. The estimates
indicate that an increase in the male’s work distance of one standard deviation is associated with
the probability that the household buys a diesel car by 5.1 percentage points. The coe�cient
on real household income is positive for weight, engine power (kW) and size (cc) and the real
price. This means that richer households tend to buy larger and more powerful cars. Figure
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Figure 2.2: Diesel Cars — Fraction of Total New Car Sales in European Countries
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Source: ACEA (http://www.acea.be/collection/statistics).

B.12 visualizes the spatial dimension of this and shows that the urban regions of Denmark have
low work distances and low diesel shares while some of the regions with the longest work dis-
tances also have a higher prevalence of diesel cars. Moreover, the figure shows that there are
rural regions in the eastern part of Denmark where diesel cars are very popular in spite of work
distances being lower. Appendix B.3 contains more descriptive statistics.

In Appendix B.4, I present detailed descriptives for the fuel price development over time.
Fuel prices have increased by 23.0% and 33.7% for gasoline and diesel fuel respectively. This has
mainly been driven by changes in the product price as Danish fuel taxes rates have been largely
unchanged over the period (cf. Figure B.4). The fact that the diesel share has increased in spite
of diesel fuel prices growing faster than gasoline prices indicates that either the characteristics or
the di�erential tax rates of diesel cars have changed even faster in a favorable direction. Finally,
even though the relative price of diesel to gasoline has increased from 80.6% to 89.2% over the
period, there has substantial gyrations in the relative price year to year (Figure B.6).

More detailed descriptives are presented in appendix B.3 but to paraphrase, the only house-
hold demographic that appears to predict diesel purchase is the home-work distances of each of
the spouses. This variable is also an important predictor of the household’s vehicle kilometers
travelled (VKT) and elasticity of driving with respect to the price per kilometer (PPK). The
variable is rarely available in empirical studies and often considered to be the main component
of household fixed e�ects in driving equations.

3 Model

In this section, I outline the decision model of the households. I first present the functional form
of the two-period utility function. I then solve for optimal planned driving in the second period,
before inserting this back into the first-period utility to derive the expected utility of choosing
a given car.
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Table 2.1: Summary Statistics — Shortened Names in Parentheses
Car Variables

N Mean Std.

Fuel e�ciency (km/l, e) 128,910 14.68 2.56
Weight (tons, qweight) 128,910 1,660.80 201.63
Horsepower (kW, qkw) 128,910 70.71 16.94
Displacement (cc, qdisplace) 128,910 1,580.08 265.40
Diesel (%) 128,910 0.1108 0.31
Price (2005 DKK, pcar) 128,910 219,284.20 66,522.11
Depreciation factor (”) 128,910 0.8741 0.0118
Units Sold 128,910 228.20 213.48

Demographic Variables

N Mean Std.
Work distance, male (WDm) 128,910 11.80 19.63
Work distance, female (WDf) 128,910 8.12 14.84
Gross income (2005 DKK, inc) 128,910 701,058.5 456,223.5
Number of kids (nkids) 128,910 0.9866 1.07
Unemployment, male (unempm) 128,910 0.0859 0.28
Unemployment, female (unempf) 128,910 0.1616 0.37
Age, male (agem) 128,910 43.99 10.12
Age, female (agef) 128,910 42.00 10.27
Male income % 128,910 0.5894 0.13
Urban area (bigcity) 128,910 0.2084 0.41

The model builds on the discrete-continuous selection model literature going back to Dubin
and McFadden (1984). The idea is that the usage in the second period comes out of Roy’s
identity. This type of framework was applied to car choice and usage by Bento et al. (2009)
and Gillingham (2012). The model presented below is based closely on the latter but with
the extension of allowing household demographics to a�ect driving not only through the price
sensitivity parameter but also through the mean driving.

3.1 Household Utility

The model is a two-period model; in the first period, t1, the household purchases a car of type
j at the price p

car
j

under uncertainty about fuel prices in the future. In the second period, t2,
fuel prices are realized and the household makes its driving decision. Households enter the new
market at di�erent points in time and thus face di�erent sets of available cars, J

t1 , and di�erent
fuel prices. In the implementation, t1 is the calendar year in which the household enters the
new car market, i.e. t1 œ {1997, ..., 2006}. The driving period length is four years, because the
first mandatory safety inspection at which the odometer is measured in the data occurs after
four years. At the end of the second period, four years later, the car is sold at the used-car price
given by ”

4
j

p

car
j

, where ”

j

is a car-specific annual depreciation factor obtained from the Danish
Automobile Dealer Association (the ”

j

is 0.874). There is no outside option of not owning a car
and there are no used cars in the choiceset.9 In that sense, the model conditions on entry into

9The main reason for not having an outside option because this simple quasi-linear two-period model is not
well-suited to deal with the inherently dynamic problem of purchasing a car, which represents a major investment
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the new car market but remains agnostic about why and when this entry occurs.10

The utility function takes the form

u

ij

= u

ij1 + —

4E(u
ij2),

where — is the annual discount factor (fixed at 0.95) which is raised to the power four because
there are four years between purchase and driving period. Both of the period-utilities are quasi-
linear in the consumption of the composite outside good. First-period utility takes the form

u

ij1 = “

i

1
y

it1i ≠ p

car
j

≠ 4·

j

2
+ u

own(j),

where u

own(j) is utility from owning a car but not related to the driving, ·

j

is the annual tax
and y

it

denotes household income in period t. The parameter “

i

scales the utility of money
relative to that of driving and it varies across households according to “

i

© “

Õ
z

z

i

, where z

i

is a
vector of household demographics. For the primary results, I let u

own(j) = –

Õ
0q

j

, where q

j

is a
vector of observable characteristics for the car such as weight, engine power but not including
fuel e�ciency, e

j

, which is restricted to enter the model through the cost structure.11 This term
shifts mean utilities of buying a given car in a way that is unrelated to the driving utility so as
to better fit market shares.

In the second period, the household must choose how many kilometers to drive, x. The
second-period utility is given by

u

ij2 = “

i

A

y

it2 + ”

4
j

p

car
j

≠
p

fuel
jt2

e

j

x

B

+ –1ij

x + –2x

2
,

where e

j

is the fuel e�ciency of car j in kilometers per liter, p

fuel
jt2 is the price of fuel (gasoline

or diesel depending on the fuel type of car j), and –1ij

is a parameter that a�ects the utility of
driving an extra kilometer. This parameter is heterogeneous and correlated with demographics
and car characteristics as follows:

–1ij

© –10 + –

Õ
1z

z

i

+ –

Õ
1q

q

j

+ c

i

.

The variable c

i

is a time-constant random e�ect that is independent of z

i

and q

j

and captures
heterogeneity in the utility of driving that is unobserved by the econometrician but observed by
the household. The assumption that utility from driving is quadratic yields a computationally
attractive form for optimal driving as we shall see. It implies theoretically a bliss point in driving
but in the application, all households were far below this point. The coe�cient –2 has also been
allowed to vary over i and j but the additional parameterization did not improve model fit so I

in Denmark on account of the large taxes. I ignore the used-car market partly due to missing data on car
characteristics, which would heavily skew my sample over time, and partly due to the dimensionality; including
that many more car types would force be to reduce the dimensionality of the choiceset.

10One could imagine a fully dynamic optimal stopping problem where the consumer in each period considers
replacing his current car, e.g. Schiraldi (2011). However, then it would be computationally very challenging to
have a choiceset of J = 1, 177 cars.

11In future work, it would also be interesting to include information on parents’ automobile choice where
available in the registers as persistence in brand preference within a family has been documented in the literature
(Anderson et al., 2013).
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chose the more parsimonious specification.

3.2 Solving the Consumer’s Problem

In period t2 when the household makes its VKT choice, x, it conditions on the purchased car.
Thus, optimal driving maximizes u

ij2 conditional on j. Interior solutions must therefore satisfy
the first-order condition;12

x = ≠ 1
2–2

A

–1ij

≠ “

i

p

fuel
jt2

e

j

B

© x

ú
ij

(pfuel
jt2 ). (3.1)

Thus, optimal driving is characterized by a linear equation, where car characteristics shift the
level of driving and household demographics shift both the level and the price sensitivity of
driving. In particular, note that the unobserved driving type, c

i

, shifts the level of driving.
The linear form conveniently allows me to relate the structural parameters to reduced-form
regressions of VKT on the price per kilometer, defined as the fuel price divided by the fuel
e�ciency, p

fuel
jt2 /e

j

, since the scaled parameters, ≠–1ij

2–2
and “i

2–2
, are identified by the driving

equation. This is also useful for finding good starting values.
When I insert the optimal driving rule from (3.1) back into the full utility function I obtain

an expression that can be computed based on data. Due to the quasi-linearity, the income term,
“

i

(y
it1i + —

4
y

it2i), does not vary over j and so can be dropped from the specification. Instead,
income is allowed to enter through both the heterogeneous parameters, –1ij

and “

i

, to capture
correlations with taste patterns and leisure activities. The expected utility of choosing car j is

u

ij

= ≠“

i

4·

j

+ “

i

Ë
1 ≠ (—”

j

)4
È

p

car
j

+ u

own(j)

+—

4E
I

≠“

i

p

fuel
jt2

e

j

x

ú
ij

(pfuel
jt2 ) + –1ij

x

ú
ij

(pfuel
jt2 ) + –2

Ë
x

ú
ij

(pfuel
jt2 )

È2
-----p

fuel
jt1

J

. (3.2)

All that remains is to specify the household’s expectations at time t1 about fuel prices at time
t2 conditional on fuel prices at time t1s. In the literature, many implementations have used static
expectations, whereby the expectation in (3.2) collapses to a single number. Gillingham (2012)
uses a unit root and also allows consumers to use prices of futures on fuel in their forecast. He
finds that it makes little di�erence to his results. I have implemented both static expectations,
perfect foresight and a unit root with a drift. For the unit root, the expectation in equation
(3.2) must be solved by numerical integration. I do this using Gauss-Hermite quadrature, which
performs extremely well for univariate integrals. As it turns out, the specification of the fuel
price expectations do not greatly impact my main results. There are two intuitive reasons for
this; firstly, the variation in fuel e�ciency in the choiceset is larger than the variation in fuel
prices over time. Secondly, the quasi-linear utility function implies that consumers are risk
neutral. In a model with diminishing marginal utility of money or credit constraints, concerns
about fuel prices rising too much might push the household down to low levels of consumption
and high curvature. The non-linearity of such a model could yield much greater di�erences
depending on the expected fuel prices.

12At the estimated parameter values, the model only predicts strictly positive VKT for all households.
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One simplification that the fuel price expectation structure has imposed in all cases is that
the gasoline and diesel price processes are not modeled jointly by the households. The price
of diesel has moved from 80.6% to 89.2% of the gasoline price over the period, but there are
substantial fluctuation year to year (cf. Figure B.6). The forecasts from a bivariate time-series
process of the two fuel prices, possibly including oil prices, might yield an improvement but I
leave this for future work.

I will conclude the model section with a brief discussion of the assumptions imposed by
the model. The quasi-linearity of the model a�ords a lot in terms of simplifying the model
solution. An alternative interpretation, due to Bento et al. (2009), is that the model considers
the problem of a household renting a car for four years; since the household pre-commits to
selling the car again and there is no uncertainty about future car prices, the analogy is very
clear. This simplification admits more complexity elsewhere. Moreover, curvature is more likely
to make a di�erence for the decision about when to go on the new car market; households might
choose to postpone car purchases simply due to the fear of becoming unemployed and receiving
a large negative income shock. Since this is beyond the scope of this paper, I choose to focus
on having a highly detailed model of the car choice conditional on entry. Instead, I rely on
capturing some of these e�ects by allowing income to change the marginal utility of money and
driving by including it in “

i

and –1ij

to capture some of these e�ects. This is similar to how
many papers in the literature following Berry, Levinsohn, and Pakes (1995) have done it.

Computationally, the main challenge with the implementation of the model is the dimen-
sionality of the choiceset, J . Avoiding aggregating cars has the advantage of clarity as well as
precision in terms of calculating tax revenue and other counterfactual outcomes that rely on the
precise characteristics of individual cars; such details might get lost in aggregation. The model
has been implemented in c, which has yielded a considerable speedup over Matlab in particular
due to parallelization and explicit utilization of the sparsity structure of J due to some car
models not being available in all years.

4 Empirical Strategy

In this section, I first outline the econometric methodology and derive the likelihood function.
I then discuss where the identifying variation is coming from in the data and comment on the
implementation of the estimator. Finally, I outline how I simulate from the model and calculate
counterfactual outcomes based on the estimated parameters.

4.1 Econometric Methodology

The econometric methodology follows Gillingham (2012). The dataset contains for each house-
hold the discrete car choice, d

i

, and the continuous driving choice, x

i

. Furthermore, it contains
the realized average fuel price over the household’s driving period, p

fuel
jt2i

, and finally the vector
of demographic variables, z

i

. The subscript i in period t2i

is to remind the reader that there
is cross sectional variation in the fuel price insofar as two households’ periods do not perfectly
overlap. Fuel prices also vary with j depending on the fuel type of the car. Other than that,
the year of purchase gives the annual fuel prices that year and the choiceset and characteristics
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of the cars available in that year.
To obtain non-degeneracy of the model, an error term is added to both choice margins; an

IID Gaussian measurement error to the optimal driving equation and an IID Extreme Value
term to the conditional utility, u

ij

. The observed driving for household i, x

i

, is therefore written
as

x

i

= x

ú
idi

(pfuel
dit2i

) + ÷

i

, ÷

i

≥ N (0, ‡

2
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),

This means that the partial likelihood contribution for the observed driving is given by
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, (4.1)

where the dependence of predicted driving, x

ú
id

(·), on the unobserved type, c

i

, is subsumed.
For the type choice, the full utility for household i from choosing car j œ J

t1 becomes

ũ

ij

= u

ij

+ Á

ij

, Á

ij

© 1
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Á̃

ij

Á̃

ij

≥ IID Extreme Value.

I will discuss the scale parameter, ⁄, in greater detail below. The probability that car j maximizes
household i’s utility is therefore given by

Pr
i

(j|◊) = exp(u
ij

/⁄)
q

j

ÕœJt1
exp(u

ij

Õ
/⁄) .

I will estimate one version of the model where c

i

= 0 for all i. In that model, the full log-
likelihood contribution for for household i becomes

¸
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In the general case, I will assume that c

i

≥ N (0, ‡

2
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) and the likelihood gets the typical
integrated likelihood form similar to the mixed logit:
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where � is the Gaussian cdf. The conditioning on the individual e�ect c = ‡

c

c

i

is made explicit
in both f

x

(·) and Pr
i

(·) in the equation as a reminder that it enters into –1ij

and thus in both
optimal driving and choice-specific utilities. In this sense, the c

i

variable has the interpretation
of a random e�ect. The univariate integral will be computed using Gauss-Hermite quadrature.13

The model has been implemented in the programming language c using Matlab’s interface,
Mex. For optimizing the likelihood function, I have alternated between using a gradient based
(quasi-Newton) and a gradient-free (Nelder-Mead) solver with semi-analytic numerical gradients
(exploiting the linear structure of the random coe�cients) and BHHH approximation of the

13For the results presented here, only 8 nodes were used. Future work is under way using more nodes. Comparing
quadrature with simulation using simple, smooth functions and univariate integrals, it was found that quadrature
attains the same level of precision as simulation using five to ten times more evaluations of the integrand. This
point was also highlighted by Dubé, Fox, and Su (2012) and Judd and Skrainka (2011).
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Hessian due to Berndt et al. (1974).14

The logit scale parameter, ⁄, is not identified in the outset because the scale of utility can
be moved up and down by –2. However, I found that the likelihood was more easy to manage
numerically with a re-normalization setting –2 := ≠1 and estimating ⁄ instead. Unfortunately,
the likelihood function turned out to be extremely flat in the direction of ⁄. Instead, I estimated
the model over a grid of ⁄-values and picked the ⁄ that produced the best fit for the data
while also giving sensible elasticities. If I allow the optimizer to choose ⁄ freely, the optimizer
terminates without convergence at a ⁄ value of just over 100,000, at which point the model
produces zero elasticities (to the fifth decimal) on all margins. I discuss this issue in greater
detail in Appendix C and outline a potential model extension that would allow me to estimate
the scale parameter jointly with the remaining parameters. This approach involves estimating
car type fixed e�ects vis-a-vis Berry, Levinsohn, and Pakes (1995).

4.2 Identification

The model relies on both cross-sectional and time-series variation as well as within-household
variation. The variation in fuel prices and the choiceset over time identifies how households
substitute between available cars under di�erent circumstances. The parameters in the utility
function are moreover tied down by there being two observed outcomes for each household; the
discrete car choice and the continuous driving choice. In that sense, the model intuition is not
far from a Heckman selection model; the exclusion restrictions are the fuel prices at the time of
purchase, the choiceset available at the time of purchase as well as the structure of the model.
In essence, the model imposes the strict cross-sectional restriction that consumers value money
in a similar fashion when making car purchase decisions and driving decisions. The driving
decisions should be thought of as covering several years and not the daily driving decisions,
where households can switch purchases over the week days in response to daily variation in
prices.

There has been a considerable increase in fuel prices in my sample period which, as discussed
in section B.3, has arguably been driven by world-market factors. To leverage variation from
changes in the tax rates over the period, I have explicitly coded the annual tax rates, ·

j

, and
included those in the model. The characteristics of available cars have also changed substantially
due to technological progress over the ten-year period, which has made cars more fuel e�cient for
any given level of car weight. These sources of variation are fine to the extent that the changes
in car makers’ portfolios is driven by tax policies or demand side e�ects in other, bigger markets.
However, there may of course be common trends in demand across countries leading to this. For
example, urbanization patterns across many developed countries have followed similar patterns
with more households moving to the urban areas. My work distance variable will capture such
trends, so in terms of the driving equation, I am more worried about correlated trends in leisure
driving. In related work, Gillingham and Munk-Nielsen (2015) explore many di�erent sources
of variation to estimate the medium-run, 1-year elasticity of driving with respect to fuel prices
and find a central elasticity of ≠0.30 with household fixed e�ects. This is very close to what I

14Whenever the gradient-based solver would get stuck, unable to improve the likelihood along the gradient
direction, the Nelder-Mead solver proved useful in breaking free of the local optimum.
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find when I take into account selection, even though I don’t include fixed e�ects.
In terms of the discrete car choice, the model can be thought of as a mixed logit with a

particular functional form imposed on the choice-specific utilities. In much of the literature on
car choice the driving equation is not considered but there will often be either sophisticated
nesting structures on the logit errors or car specific fixed e�ects in the Berry, Levinsohn, and
Pakes (1995) or both (Grigolon, Reynaert, and Verboven, 2015). In future research, it would
be interesting to see these features integrated in a discrete-continuous choice model. I propose
such an extension in Appendix C but leave the estimation to future research.

4.3 Simulating From the Model

As with most structural models, it is essential to be able to simulate counterfactual behavior
from the model. Essentially, we want to compute simple statistics characterizing the final market
outcome of making changes to taxes, prices or the characteristics of cars. These outcomes might
be the CO2 emitted, tax revenue, the average fuel e�ciency, etc. Formally, suppose we are
interested in some outcome Ê

ij

. Then define the average expected outcome as

Ẽ(Ê|◊) © 1
N

Nÿ

i=1

ÿ

jœJi

Pr
i

(j|◊)Ê
ij

. (4.2)

This is the average (over households) weighted average (over available choices weighted with
conditional choice probabilities) outcome.

Note that in the computation of (4.2), I need to take a stand on the stochastic variables
in the model; ÷

i

, Á

ij

and c

i

. The measurement error is set to zero, ÷

i

:= 0. Since I am
weighting by conditional choice probabilities, the expression is implicitly an expectation over
Á

ij

. Lastly, c

i

is set to zero for all households; instead, one could integrate out the random e�ect
unconditionally, but given the quasi-linearity and the linear driving equation, it is unlikely that
such e�orts would yield very di�erent results.15 Standard errors have not been computed for
the expected outcomes.

Two examples of outcomes of particular interest require an extra comment. Firstly, the CO2

emissions; These are calculated using the kg of CO2 that is emitted by the combustion of a liter
of each fuel,16 yielding the following CO2 emissions (in kg) conditional on choosing car j and
realized fuel price p

fuel
jt2i

,

CO2,ij

©
1
1{j is gas}2.392kg

/l + 1{j is diesel}2.64kg
/l

2
x

ú
ij

(pfuel
jt2i

)
e

j

.

Setting Ê

ij

:= CO2,ij

in (4.2) gives the average expected CO2 emissions. The analysis emphasizes
CO2 emissions to focus on the environmental aspects but might as well have emphasized fuel

15The reason why the random e�ect makes a di�erence in estimation is that here, information from both periods
are employed simultaneously and thus the simulated likelihood will apply the highest weight to the region of the
support of ci that best rationalize household i’s two decisions. An alternative approach that might yield di�erent
results would be to integrate out ci conditional on choices; this is in line with the approach outlined in Train (2009,
ch. 11). That strategy has some similarities with a latent class model where one can compute the probability
that ci = cq for some quadrature node q, and use these weights in counterfactual simulations.

16These numbers come from www.ecoscore.be (and are confirmed by www.environment.gov and www.epa.gov).
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use; the two are proportional.
Secondly, the tax revenue can be calculated conditional on car purchase and subsequent

usage. The conditional total tax revenue, ·

total
ij

, is given by

·

total
ij

© ·

fuel
j

p

fuel
jt2i

e

j

x

ú
ij

(pfuel
jt2i

) + ·

reg(pcar
tj

) + 4·

annual
,

where ·

reg(·) gives the registration tax and ·

fuel
j

is the fuel taxes in pct. of the total fuel price.
Setting Ê

ij

:= ·

total in (4.2) gives the average expected tax revenue for the government.
Lastly, following Small and Rosen (1981) and Gillingham (2012), the model yields the usual

“logsum” welfare measure defined as
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V
, (4.3)

which can be used to evaluate the welfare impacts on consumers from changing parameters of
the choiceset such as car characteristics or tax rates. It should be noted though that since there
is no outside option, this welfare measure does not take into account that households may choose
not to own a car.

5 Results

In this section, I present the estimation results. I start by presenting the structural parameter
estimates and discussing these. To assess the validity, I discuss the driving equation and relate it
to a partial estimation of the driving parameters alone as well as to what has been found in the
literature. To get a better intuitive grasp of the model behavior at the estimated parameters,
I compute a number of relevant outcomes and calculate the elasticities of these with respect to
exogenous variables. Finally, I discuss robustness and consider alternative specifications of the
fuel price expectations process.

Table D.1 shows the structural estimates from the preferred specification allowing random
e�ects (c

i

”= 0) and where consumers have perfect foresight with respect to fuel prices. I will
discuss the fuel price expectations later. The coe�cients have the expected signs; households
with higher work distances tend to drive more (–1z

-coe�cients are positive) and be more price-
responsive in their driving (“

z

-coe�cients also positive, increasing the magnitude of the utility
of money).17 Urban households tend to drive their cars less and older households also drive less.
Heavy cars tend to be driven more intensively as indicated by –1,weight and –1,weight2 both being
positive; this is consistent with car weight proxying for unobserved luxury characteristics. The
term, –0, captures utility from the car ownership that are unrelated to driving. The parameters
entering into –0 tend to be very large, but recall that they should be divided by the ⁄-value of
10,000. The diesel coe�cient (–0,diesel) is negative; this indicates that there is some characteristic
about diesel cars that keeps households from buying them even though their other characteristics

17Gillingham and Munk-Nielsen (2015) explore precisely this feature of the data, finding that it high-driving
households switch from driving to car to using other modes of transport when fuel prices increase. The behavior
is consistent with a model of switching costs in changing transport mode to work from private car to public
transportation.
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make them more attractive than a given gasoline car. Finally, note that the dispersion in the
unobserved driving type, c

i

, is estimated to be 16.09, while the standard error on the driving
equation measurement error is 21.95. This indicates that the endogenous selection of car type
based on other factors still play a considerable role even though work distance is accounted for.

Table 5.1: Estimated parameters
Fixed Parameters

Parameter Value
— 0.95
⁄ 10000
–2 -1
Model: Perfect foresight, random e�ects.

General Parameters
Parameter Estimate t

‡

x

16.093 (69.12)
‡

–

21.951 (31.77)
Demographics

“

z

–1z

Parameter Estimate t Estimate t

Constant 47.596 (35.22) 74.927 (14.88)
Age -8.447 (-18.97) 8.901 (8.71)
Age2 7.363 (15.88) -15.168 (-14.39)
Work distance, male 8.170 (18.95) 17.889 (69.45)
Work distance, female 1.079 (19.46) 9.684 (108.20)
Income -9.457 (-31.44) -8.768 (-39.94)
Number of kids 1.453 (11.65) -0.458 (-2.93)
Urban dummy -0.210 (-1.48) -1.412 (-10.09)

Car Parameters
Parameter Estimate t

–0,weight 124074.734 (41.91)
–0,weight2 -5009.689 (-5.67)
–0,kw -413.653 (-25.53)
–0,kw2 5.114 (46.83)
–0,displace -194.172 (-0.15)
–0,displace2 4976.559 (13.12)
–0,diesel -4235.595 (-24.99)
–1,weight 18.876 (3.12)
–1,weight2 10.189 (5.64)

Recall from section 4 that the VKT equation can be estimated separately, using the partial
likelihood function from equation (4.1). Table 5.2 shows the elasticities of VKT with respect to
the fuel e�ciency, the weight of the car, and the fuel price.18 Elasticities are computed numer-

18The estimated linear equation regresses VKT on demographics and car characteristics as well as demographics
interacted with the price per kilometer, defined as the fuel price (gasoline or diesel depending on the car) divided
by the fuel e�ciency.
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Table 5.2: Elasticities of VKT From the Structural Model — Partial Estimates and Preferred
Specification

Partial Likelihood (using f

x

(·))
Fuel e�ciency Weight Fuel Prices

Mean 0.718 1.323 –0.725
Std. 0.426 0.339 0.431

Preferred Specification (using ¸

sim(·))
Fuel e�ciency Weight Fuel Prices

Mean 0.279 0.858 –0.282
Std. 0.085 0.171 0.086

ically for each observation using finite di�erences and reports both the average and standard
deviation of the elasticity across observations.19 The elasticity of driving with respect to the fuel
e�ciency from the partial model is –72.5%. This central elasticity, when properly identified, is
what Small and Van Dender (2007) refer to as the rebound e�ect. This estimate is fairly close
to the approximately –80% that Frondel, Peters, and Vance (2008); Frondel, Ritter, and Vance
(2012) find using German data. The estimate from the full model accounting for selection, how-
ever, is –28.2%. Gillingham (2012) finds a bias in the same direction but smaller in magnitude
with a rebound e�ect of –21% dropping to –15% when selection is accounted for. Bento et al.
(2009) find a mean elasticity of –35% which also controls for selection. Note that the elasticity
with respect to fuel price and fuel e�ciency are the same (except for the sign and direction)
since they only enter the model together in the price per kilometer.20 Finally, the estimates in
Table 5.2 indicate that weight has a large e�ect on driving with an increase in weight of 1%
being associated with an increase in driving of 0.858%. This implies that to understand the
impacts of a car reform on driving and thereby emissions, it is not enough to just focus on the
fuel e�ciency; the weight of the chosen vehicles can also have strong e�ects on the final driving.

To get a better grasp of the implied behavior by the structural elasticities, Table 5.3 shows
a range of economic outcomes simulated from the model in column (1) by the method described
in Section 4.3. The table also shows elasticities of these outcomes with respect to four di�erent
variables in columns (2)–(5), computed using finite di�erences.

Column (2) shows the relative change in each expected outcome when the fuel e�ciency of
each car in the choiceset is increased by 1%. For the fuel e�ciency of the chosen vehicles, this
has an elasticity of 0.90 so that the average expected fuel e�ciency is 0.9% higher. This implies
that when technological progress makes cars more fuel e�cient, households substitute away some
of this for other characteristics; the weight increases by 0.09%, the engine power (kW) by 0.24%
and the diesel share falls by 0.18%. More interesting, the CO2 elasticity is –57%, so that a 1%
improvement in fuel e�ciency does not give a full 1% improvement in CO2 emissions. This is
partly due to consumers switching away from e�cient cars and partly due to consumers driving

19The dispersion in the elasticity is driven by the dispersion in the computed coe�cient “̂i © “̂Õ
zzi.

20Gillingham (2012) allows ej to shift the mean uij by putting it in the term –Õ
0qj in (3.2).
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Table 5.3: Structural Elasticities — Quasi, Perfect Foresight, Random e�ect
Levels Elasticities
(1) (2) (3) (4) (5)

Baseline Fuel e�ciency Weight Fuel prices O95 prices
Consumer welfare

CS 114970.09 0.25 1.29 -0.25 -0.20
Total taxes

E(total taxes) 146623.83 0.08 0.40 -0.08 -0.06
Ownership tax

E(Regtax revenue) 106556.44 0.23 0.27 -0.23 -0.14
E(Owntax revenue) 11093.62 0.29 0.31 -0.28 -0.16

Fuel tax
E(O95 revenue) 25115.85 -0.49 0.63 0.50 -0.02
E(Diesel revenue) 3857.92 -0.89 2.98 0.88 2.33

Driving/fuel use
E(VKT) 79663.89 0.30 1.01 -0.30 -0.19
E(litre O95) 4340.92 -0.49 0.63 -0.50 -1.01
E(litre D) 891.32 -0.89 2.98 -0.12 2.33
E(litre D|urban) 188.02 -0.86 3.04 -0.14 2.24
E(kg CO2) 12736.56 -0.57 1.06 -0.43 -0.39

Characteristics
E(fe) 15.92 0.90 -0.00 0.10 0.20
E(we) 1.70 0.09 1.15 -0.09 -0.04
E(kw) 77.08 0.24 0.13 -0.23 -0.25
E(displace) 1.65 0.18 0.12 -0.18 -0.16
E(% diesel) 18.49 -0.16 1.86 0.15 2.33
E(% diesel|urban) 3.89 -0.14 1.88 0.13 2.24
The model is quasi-linear with perfect foresight and
and random e�ects (‡– is estimated).
The baseline column is expected outcomes, all other are elasticities.
(1): baseline 2006 scenario, (2) fuel e�ciency up by 1%, (3): weight up by 1%,
(4): all fuel prices up by 1%, (5): only O95 up by 1%.
Counterfactuals are run on 2006 data.
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longer since the cost of driving an extra km is now lower. This result has huge implications
for climate policy since it means that in order to reduce CO2 emissions by 1%, the required
improvement in fuel e�ciency is approximately 1.75%.

Column (3) shows the e�ects of increasing the weight of all cars by 1%. This increases VKT
by 1.01% and CO2 by 1.06%. Note that the elasticity of driving with respect to car weight was
even stronger in the partial equation, indicating that selection is at play.

Column (4) shows the e�ects of increasing the real fuel price at the pump by 1%.21 The
most notable result here is that tax revenue falls, indicating that the Danish taxes are at the
wrong side of the La�er curve’s top; While revenue from fuel taxes increase, revenue from the
registration and the ownership tax fall by much more because households buy di�erent types of
cars. CO2 emissions fall by 0.41%, which should be compared to the intensive-margin response
of 0.28% implied by Table 5.2.22

Finally, column (5) increases gasoline prices by 1% but keeps diesel prices constant. The
result is a 2.33% change in the probability of purchasing a diesel car (and thus of the diesel
market share). This gives a first indication that the diesel market share is highly sensitive to
cost di�erences.

Based on the elasticities of CO2, tax revenues and welfare with respect to fuel prices, it is
possible to compute the marginal cost of CO2 reductions from a fuel tax. Back of the envelope
calculations indicate, that a reduction of one ton of CO2 would cost society 7389.90 DKK.23

This number is far above the Social Cost of Carbon of 260 DKK per ton as suggested by the
US Environmental Protection Agency. The high cost is perhaps not surprising given how high
the tax level is in Denmark.

To examine robustness, the model has also been estimated assuming static expectations
and a unit root as described in section 3.2. These di�erent specifications gave quite similar
results in terms of elasticities and implications for the counterfactual simulations so the perfect
foresight model was chosen. The results with static expectations are shown in Appendix D.1; the
elasticities of the relevant quantities relatively unchanged compared the corresponding ones for
the model with perfect foresight, although the driving response is –0.39 instead of –0.30. This
implies a higher reduction in driving, and the cost per ton of CO2 for the fuel tax implied by
these estimates is correspondingly lower: 5843.02 DKK. The key to understanding the di�erence
between the parameters estimated under the two sets of assumed price expectation formation is
the realized movements in fuel prices (see Figure B.3); prices have been increasing throughout

21Note that to obtain this using taxes, one would have to take into account supplier responses. For the US,
Marion and Muehlegger (2011) find a pass-through to consumers of almost 100% but given the substantially
higher taxes in Denmark, that conclusion might not be valid here. Nonetheless, I abstract from the question of
passthrough.

22Table 5.2 conditions on car choice so any given relative change in driving will produce the same relative
change in fuel consumption and thus in CO2 emissions.

23The required change in fuel prices to reduce CO2 by 1 ton is approximately �p = (ECO2,pCO2/p)≠1 =
(0.43 12.7 ton

8.5 DKK/l )
≠1 ≥= 1.55DKK/l. This implies an approximate change in consumer surplus and taxes of

�CS = CS ◊ ECS,p ◊ �p
p

= 114, 970.09 ◊ ≠0.25 ◊ 1.55
8.5

≥= ≠5248, 13 DKK

�Taxes = 146, 623.83 ◊ ≠0.08 ◊ 1.55
8.5 = ≠2141, 78 DKK.
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the period and the likelihood conditions on the same car and driving choices. Therefore, if
consumers knew that prices would increase yet did not choose an even more fuel e�cient car
to curb fuel costs, it must be because they valued the fuel savings less relative to the other car
characteristics. I have chosen the perfect foresight model as the preferred specification because
the in-sample fit of the diesel share is better (Figure D.3). However, I think that for future
research it might be more fruitful to focus on modeling the time-series development in the
relative price of gasoline and diesel; Figure B.6 shows that the relative price of diesel to gasoline
has gyrated around an increasing trend and gyrations appear to show up in the predicted diesel
share. Figure D.2 illustrates that the model’s over- and under-predictions seem to be correlation
with the gyrations.

6 Counterfactual Policy Simulations

In this section, I present a sequence of counterfactual policy simulations. I start with a dis-
cussion of the model structure and assumptions and what they imply for the applicability of
the counterfactuals. I then present a counterfactual simulation, implementing the out-of-sample
2007 reform in-sample. Next, I assess the role of the 1997 reform in driving the increase in diesel
cars in Denmark. Finally, I present a counterfactual exploring the diesel share in absence of
discriminatory ownership and fuel taxes.

6.1 External Validity

The strength of the model is in understanding how households trade o� between available cars
in the choiceset in characteristic space and how this interacts with driving decisions. In that
sense, the model is well-suited for understanding how car tax policies feed into driving behavior
and the related externalities. The high-dimensional choiceset makes the model precise in terms
of modeling the tax system and leveraging policy variation. However, the computational cost of
this dimensionality is that the model conditions on entry into the new car market. This means
that all the simulated e�ects are for the average household; the model is uninformative as to
changes in the number of households (or cars per household). Moreover, restricting the model
to new cars e�ectively eliminates real-world substitution alternatives in the form of the used-car
market and the outside option of not owning any car. Ignoring substitution options for the
consumers will inflate my estimate of the consumer loss related to increasing taxation.24

The second main restriction of the model is that supply side responses to the proposed reforms
are ignored, i.e. assuming a 100% passthrough of taxes. In reality, profit maximizing car sellers in
oligopolistic competition will likely change the relative prices of cars in their portfolios. In defense
of this assumption, Adamou, Clerides, and Zachariadis (2013) find little di�erence between their
simulation results when they use their estimated supply side pricing function or simply assuming
100% passthrough in a European context. For fuel taxes, Gallagher and Muehlegger (2011) find
that passthrough in the US to consumers is approximately 100%. Moreover, given the small size

24This is because in the model, the consumer has no choice but to shift around in the choiceset. In a more
realistic model, the consumer can also choose the outside option or used cars. Instead of being forced to absorb
higher taxes, the consumer has the option of not owning a car. Since this alternative is una�ected by fuel taxes,
the consumer surplus measure in (4.3) will drop less when that alternative is available.
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of the Danish market relative to other European countries, auto makers are unlikely to change
their production to cater to Denmark.

6.2 The 2007 Reform: Model Validation and Policy Evaluation

As described in 2.1, the 2007 reform was a feebate, meaning that it gives a rebate to green cars
and puts a fee on ine�cient cars. The pivot point of the reform, di�erentiating green cars from
dirty ones, was set to 16 km

/l for gasoline cars and 18 km
/l for diesel cars. Recall that 2007 is

not in the estimation sample because driving information is only available for a small number
of cars purchased in this year.

Table 6.1 shows the implications of implementing the 2007 feebate in 2006. Most importantly,
the diesel market share goes up from 18.5% to 24.5%, an increase of 32.3%.25 The true response
to the 2007 reform was an increase in the diesel share of 46.0%. In other words, the model
can explain two-thirds of the relative shift in the diesel share. Similarly, the model predicts the
average fuel e�ciency to increase by 7.04% whereas the actual response to the reform was 5.73%.
In this case, the model overshoots but as Figure (2.1) illustrates, the fuel e�ciency continues to
increase in the following years, increasing by an additional 7.63% in 2008. I view these as good
out-of-sample fits.26

Regarding the predicted environmental impact of this reform, the average expected CO2

emissions fall by 892.2kg or 7.0%. Some of this comes through the intended channel of improved
fuel e�ciency which increases by 7.0%, but recall from table 5.3 that this only translates into
approximately 0.57 · 7.0% = 4.0% reductions in CO2. In particular, the reform as a by-product
reduces weight by 3.5% which translates into less driving, yielding an additional 1.01 · 3.5% =
3.5% in CO2 reductions. In other words, the reform’s impact on the weight of the chosen vehicles
is almost as important as the intended impact via fuel e�ciency.

In terms of welfare, the 2007 reform increased consumer surplus but decreased taxes by
much more. Even accounting for the lowered driving and thus lower non-CO2 externalities, the
societal cost of the predicted reduction in CO2 was 11,886.99 DKK/ton. This is a 60.9% higher
cost per ton of CO2 than that of the fuel tax, cf. section 5, and even further from Social Cost of
Carbon of 260 DKK/ton. It is not uncommon to find high implied costs of CO2 savings in the
literature, e.g Beresteanu and Li (2011) and Huse and Lucinda (2013), although my estimates
are exceptionally high. However, the feebate is asymmetric with a higher rebate than fee; in
light of Adamou, Clerides, and Zachariadis (2013) it is not surprising that it is in-e�ective.

Given that the model fits the shift to diesels, the next question is which part of the policy
design led to this shift. The pivot point of 16 km/l for gasoline and 18 km/l is an obvious
candidate given that the median di�erence between gasoline and diesel cars is higher than 4
km/l. I therefore implement a counterfactual where the pivots instead are set to 16 km/l and
20 km/l. The results of this counterfactual are shown in Table D.2; here, diesel share only

25One important note to make in this regard is that the diesel share in the sample in 2006 is 18.5% whereas in
the full population it is 21.8%. As discussed in appendix B.1, this is due to diesel cars being over represented in
the car types that are only purchased by very few households and therefore dropped from the sample. I expect
that these niche cars would be hard to fit in this model framework.

26I have been unable to find data to produce a graph comparing fuel e�ciencies across European countries
similarly to how Figure 2.2 shows diesel penetration rates. My impression is that change in fuel e�ciency in 2007
for Denmark is still uniquely large but not as di�erent from the rest of Europe as is the case for the diesel share.
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Table 6.1: Counterfactual Simulations — The 1997 and 2007 Reforms
(1) (2) (3) (4)

Baseline 1997 2007 Internalization
Consumer welfare

CS 114,970.09 99,607.67 115,989.89 115,569.79
Total taxes

E(total taxes) 146,623.83 176,422.24 134,398.55 146,854.69
Ownership tax

E(Regtax revenue) 106,556.44 117,238.77 98,175.80 107,363.31
E(Owntax revenue) 11,093.62 26,613.14 9,813.59 9,131.02

Fuel tax
E(O95 revenue) 25,115.85 31,519.34 21,695.96 23,698.46
E(Diesel revenue) 3,857.92 1,050.99 47,13.20 6,661.89

Driving/fuel use
E(VKT) 79,663.89 78,391.96 78,740.62 79,518.56
E(litre O95) 4,340.92 5,447.67 3,749.84 4,095.94
E(litre D) 891.32 242.82 1,088.92 1069.70
E(litre D|urban) 188.02 50.40 230.59 230.87
E(kg CO2) 12,736.56 13,671.87 11,844.36 12,621.51

Characteristics
E(fe) 15.92 14.69 17.04 16.12
E(we) 1.70 1.73 1.64 1.71
E(kw) 77.08 89.93 70.07 76.64
E(displace) 1.65 1.86 1.54 1.65
E(% diesel) 18.49 4.97 24.48 23.28
E(% diesel|urban) 3.89 1.03 5.18 5.03
The counterfactuals are run on data for 2006.
1997: The green ownership tax is replaced with the weight based annual tax.
2007: The 2007 feebate reform is implemented on 2006 data.
Internalization: Annual and registration taxes for diesels are set in the same way as
gasoline cars but the diesel price is increased by 1.923 DKK/l.
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increases marginally by 6.2%. Moreover, this alternative version of the reform yields 91% of the
CO2 reductions of the actual reform with almost identical consumer surplus and tax revenue.
This provides evidence that the CO2 reductions achieved by the feebate were not simply due to
a shift to diesel cars.

6.3 The 1997 Reform: The Role of Taxation in the Dieselization

The 1997 reform changed the annual tax from being based on the weight of the car to being
based on the fuel e�ciency (see section 2.1). However, cars first registered before July 1st 1997
still follow a weight-based scheme. In this counterfactual, I compute the annual tax for all cars
based on that scheme instead of the actual, fuel e�ciency based scheme.27 The average expected
outcomes in 2006 under this counterfactual are shown in column (2) of Table 6.1. Figure 6.1
shows the predicted diesel share year by year in the sample.28 The results show that while the
diesel share would still have increased, the increase would have been substantially lower. In
2006, the predicted share is 4.97%, which is substantially below the baseline of 18.49%. The
reason for this di�erence is that the post-1997 tax regime rewards high fuel e�ciency while the
pre-1997 regime punished heavy cars. Since diesel cars are inherently more fuel e�cient and
tend to be heavier, they are likely to benefit from this. Already in 1997, it is clear that the new
tax scheme favors diesel cars; for the average car in the choiceset in 1997, the actual annual tax
of a diesel car was 8.0% higher than the average annual tax for a gasoline car. However, under
the counterfactual, pre-1997 regime the diesel car would be paying an 18.8% higher annual tax.
Under the counterfactual, the predicted diesel share is substantially below the predicted under
the actual tax regime (Figure 6.1) and this is driven mainly by this di�erence moving even
further in favor of gasoline cars over the period.29 The fact that the di�erence in the average
annual tax increases over time also helps to explain why the response in the diesel share following
the 1997 reform in Figure 2.2 is not a drastic shift as is the case for the 2007 reform.

6.4 The “Optimal” Diesel Share

For both the 1997 and 2007 reforms, I have found that the reforms were both misaligned in their
di�erential treatment of diesel and gasoline cars, causing a change in the status-quo diesel share.
Given that there are discriminatory elements both in fuel taxes and ownership taxes, I explore
the question: what would be the free-market outcome if the only discrimination in taxes was
due to di�erences in externalities? To answer this question, I implement a counterfactual on
the 2006 data. The only source of di�erences in externalities between diesel and gasoline cars is
related to the fuel usage; the burning of diesel fuel emits slightly more CO2 and emits harmful

27There might be many other counterfactuals equally interesting as the alternative to the 1997-reform; if for
example the rates were changed over time to encourage scrapping of vintages from before 1997. That does not,
however, appear to be the case.

28The in-sample fit of the diesel share (the “Predicted” curve in Figure 6.1) fluctuates around the observed
diesel share. The deviations are timed along with the movements in the relative price of diesel to gasoline (Figure
B.6). One way to improve the fit might be to add a bivariate forecast, since the relative deviations appear to be
strongly mean-reverting around a trend.

29By the end, however, the average diesel car in the choiceset would have paid 61.8% more, had it followed the
old scheme, while the actual, post-1997 annual tax only imposed a 23.4% higher annual tax on diesel owners.
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Figure 6.1: Predicted Dieselization From the Baseline Model vs. the Weight Tax Counterfactual.
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local air pollutants that gasoline does not.30 Therefore, I first equalize ownership taxes, setting
those for diesel cars equal to those for gasoline cars. Fuel taxes are not equal in the outset
since gasoline has a higher fixed component of the taxes (see Appendix B.3.2). Therefore, I
first equate fuel taxes by increasing the fixed component for diesel fuel up to the level gasoline
and then add an additional per-liter tax equal to the per-liter external cost. The estimates of
marginal external costs are taken from DTU Transport (2010) (see Appendix B.2). Assuming a
100% passthrough to consumers, I can simulate whether the diesel market share would be above
or below the baseline level for Denmark in absence of discrimination — this exercise is similar
to internalizing an externality using a Pigovian tax, except that the baseline gasoline tax is not
necessarily optimal. In this sense, I do not claim to find the optimal diesel share but rather an
improvement over the status quo.

The results are shown in column (4) of table 6.1. The central conclusion is that the predicted
diesel share increases by 25.9% based on the 2006 diesel share (from 18.49% to 23.28%). This
puts the predicted counterfactual diesel share between the 2006 and 2007 levels. Note that any
incomplete passthrough would directly dampen this e�ect. An interesting additional conclusion
that can be drawn from this counterfactual is that the proposed policy appears to represent
an unambiguous improvement; Consumer surplus and tax revenue go up, CO2 emissions go
down and VKT also goes down (so externalities from congestion and accidents also decrease).
However, these improvements are very small economically. This counterfactual indicates that
when the added externalities of diesel cars are priced (subject to the externality prices that I
have used), the added value of those cars (in terms of e�ciency, for example) relative to their
price makes them a valuable part of the car fleet.

30In 2012, the World Health Organization moved diesel fumes to the list of substances that are known to cause
lung cancer. There is regulation in place, e�ectively requiring diesel cars to be fitted with particle filters to reduce
this type of pollution. These are taken into account by the external cost estimates.
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7 Conclusion

In this paper, I estimate a structural discrete-continuous model of car choice and usage, allowing
endogenous selection into car types based on expected future driving. The model is estimated
using high quality full population register data for Denmark covering 1997–2006. To validate
the estimates, I exploit the Danish car taxation reform of 2007 which prompted clear changes
in new car type decisions immediately, unique to Denmark, in particular in the diesel market
share. Implementing the 2007 reform counterfactually in 2006, I find that the model is able
replicate the strong responses to the reform in terms of the diesel share and the fuel e�ciency.

A consistent finding is that Danish households have responded very strongly to the tax
incentives given by the 1997 and the 2007 reform. The implication is that both reforms were
highly cost-ine�ective ways of obtaining CO2 reductions compared to a fuel tax, mainly due to
foregone tax revenue. A central mechanism behind this is that according to simulations from the
model, a 1% technological increase in the fuel e�ciency of all cars only translates into a 0.57%
reduction in CO2 emissions; this is partly due to households substituting these fuel savings away
for larger, more luxurious cars and partly due to the rebound e�ect, whereby households being
pushed towards more e�cient cars in turn drive them more intensively (at an elasticity of –30%).
This greatly limits the e�ectiveness of environmental policies. Additionally, my results indicate
that the e�ects of car taxes on driving that work through the weight of the chosen car may be
at least as important as those working through the fuel e�ciency.

To evaluate the two tax reforms of the period, I compare their cost-e�ectiveness to a fuel tax.
I find that fuel taxes are much more e�ective. However, the cost per ton of CO2 is still many
times larger than the social cost of carbon, possibly due to the high level of taxes in Denmark
in the outset. In particular, I find that increasing fuel taxes may lower tax revenue if they are
increased; while they do increase fuel tax revenue, this is o�set by an even larger drop in car
taxes as consumers shift away from the luxury segment.

Another finding is that the reforms were responsible for most of the increase in the diesel
share that occurred in my sample period. In particular, the Danish feebate reform in 2007
could have been designed di�erently to yield 91% of the CO2 reductions but with only a minor
increase in the diesel share. Nevertheless, I also show that the societal gains from diesel cars
outweigh their negative aspects and that the diesel share in 2006 is close to the optimal level for
the Danish setting.
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Appendix

A Notation and Core Equations

This section is meant as a quick reference to give an overview of the model and the notation
used in this paper.

The notation is as follows,

j ≠ car type (e.g. 2003 Volvo V70 Turbo Diesel),

d

i

≠ the chosen car type by household i,

x ≠ vehicle kilometers travelled (VKT, a generic decision variable),

x

i

≠ the observed driving for household i (conditioning on d

i

),

x

ú
ij

(pfuel) ≠ the optimal driving rule,

e

j

≠ fuel e�ciency of a car of type jin km
/l,

p

car
tj

≠ price of a new car of type j in year t,

p

fuel
tj

≠ fuel price (the subscript j is there to distinguish diesel or octane),

“

i

≠ utility of driving relative to outside consumption (household-specific),

z

i

≠ household attributes correlated with driving utility,

y

it

≠ household income in period t,

— ≠ discount factor (fixed at 0.95),

”

j

≠ vehicle-specific depreciation rate (e.g. 0.8),

–1ij

, –2 ≠ utility from driving is quadratic in VKT with these coe�cients,

–0 ≠ coe�cients on q

j

; Utility from car j that is not related to driving,

Á

ij

≠ IID extreme value type II shock (to the car type choice utility),

÷

i

≠ measurement error in the VKT equation,

’ ≠ coe�cients used in the linear interpretation of optimal driving.

The full utility can be written as
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The driving rule, x

ú
ij

(pfuel
jt

), is given by

x

ú
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2–2
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e
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B

.

In the estimation, z

i

contains mean spouse age, age squared, work distance for both spouses,
real gross income, the number of kids and a dummy for living in a major urban area (Copen-
hagen, Odense, Aarhus or Aalborg). The characteristics, q

j

, are vehicle total weight, engine
displacement in cc, engine horsepower in kW and squares of all these variables and a dummy for
diesel. To keep the number of parameters down, only the total weight and its square was used in
–1ij

— the remaining were close to insignificant and greatly increased estimation running time.

B Data

B.1 Sample Selection

Table B.1 shows how the sample size (new car purchases) gradually drops from the initial 311,057
cars to 128,910 as di�erent sample selection criteria are imposed. The first criterion states that
the household purchasing the car must own it for at least 90% of the 4-year driving period.
This causes the most dramatic reduction in sample size because many households sell the car
within this period. Figure B.1 shows a histogram of the fraction of the 4-year period that the
purchasing household owns the car for the full sample of 311,057 purchases (disregarding the
mass point at 100%). This shows that the share declines steadily down from 90% to 0%. The
choice of 90% is to emphasize the need for accurate data on the driving to ensure that the
selection on anticipated driving is pinned down by the data. Future work should look checking
the sensitivity of the results to reducing the 90%.

Table B.1: Sample Selection
(1) (2) (3) (4) (5)

New cars Owns>90% Ncars<1.5 #sold > 30 Final sample
1997 14,500 8,866 8,252 6,453 6,019
1998 45,075 27,986 24,895 22,248 21,374
1999 42,260 25,846 22,540 20,165 19,525
2000 30,070 17,699 15,350 12,764 12,461
2001 23,774 12,182 10,389 8,057 7,893
2002 28,648 16,305 14,035 11,611 11,016
2003 22,733 12,516 10,774 8,961 8,600
2004 29,535 16,552 14,095 11,901 11,548
2005 36,722 22,794 18,999 15,863 15,490
2006 37,740 24,670 19,793 15,458 14,984
N 311,057 185,416 159,122 133,481 128,910
(2): The family owns the car at least 90% of driving period,
(3): The family may own another car but no more than 50%
of the driving period of this car,
(4): At least 30 of this car sold in full sample, (5): final sample.

29



Figure B.1: Fraction of the Driving Period Where the Original Owner Still Owns the Car
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Table B.2: Deselecting Cars That are Rarely Sold and the Resulting Diesel Share
Threshold Diesel % in 06 |J | N

30 18.5% 1,177 128,007
20 19.6% 1,518 136,977
10 20.6% 2,105 144,820
5 21.0% 2,783 149,112
0 21.8% 7,572 154,089

The second criterion deselects 2-car households but allows a second car to be present for up
to 50% of the period.

The third criterion deselects certain car types from the choice set by deleting purchases of cars
that were purchased fewer than 30 times in the period 1997–2006. This has a very unfortunate
implication in that diesel cars are heavily over represented in this group. Table B.2 shows the
implications on the sample size (N), the number of cars (|J |) and the diesel market share in
2006 of setting this limit to 20, 10, 5 and 0 respectively. The true market share in 2006 was
21.8% but the restriction on the choice set results in a share of just 18.5%. However, bringing
this up towards the truth increases the size of the choice set immensely, making estimation
computationally very burdensome.

The final criterion makes routine checks such as dropping extreme observations (outside of
the 0.1th or 99.9th percentiles) or rows with missing or senseless values.

B.2 Marginal External Costs of Driving

In this subsection, the marginal external cost estimates used for welfare calculations and for
the construction of the diesel internalization counterfactual in section 6.4 are described. The
cost estimates are taken from DTU Transport (2010) and they are provided by a major Danish
research institution and used by Danish policy makers. The external costs of driving a km in a
gasoline and diesel car respectively are reproduced in table B.3.

Two things are worth noting; Firstly, pollution and climate change costs are dwarfed by
the congestion and accident externalities. While this particular externality is not well addressed
with the model applied in this paper because it depends critically on when and where the driving
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Table B.3: Marginal External Costs per Km Travelled
by Fuel Typea

Gas Diesel Unit
Noise 0.0478 0.0478 DKK/km
Accident 0.2095 0.2095 DKK/km
Congestion 0.3368 0.3368 DKK/km
Infrastructure 0.0097 0.0097 DKK/km
Air pollution 0.1352126 0.668475 DKK/liter
Climate 0.19764 0.21000 DKK/liter
a Source: DTU Transport (2010). Note that only air pollu-

tion and climate depend on the fuel type.

takes place, it does mean that an increased tra�c flow should be highly discouraged.
Secondly, the only place where diesel car externalities are di�erent from those of gasoline cars

is in terms of air pollution and climate change. The di�erence in climate change externalities
stem from the fact that diesel cars typically drive farther per litre of fuel (a sales-weighted
average of 18.1 versus 13.5 km

/l for in 2006) while diesel only contains 10.4% more CO2 per litre
than gasoline does (2.640 kg

/l 2.392 kg
/l). The di�erence in air pollution comes primarily from

particulate matter. For the Belgian context, Mayeres and Proost (2013) report that particulate
matter makes up 85.0% of all emissions-related externalities per ton of diesel, far more than
the externalities from SO2 and NO

x

. In fact, the marginal externality of diesel air pollution
depends crucially on the population density. Since a dummy for living in one of the four largest
Danish cities is already in the model, the expected diesel use and diesel market share has been
calculated conditional on urban residence. It turned out that urban diesel use and purchases
followed the overall numbers quite closely for the reforms considered here.

B.3 Descriptives

B.3.1 Work Distance

The work distance variable is the only one that is not taken directly from the register data. This
one is calculated based on the travel tax deduction which comes from the personal tax registers.
In Denmark, anyone living further than 12 km from their work place is eligible for a deduction
depending on the distance times the number of days worked. The deduction is regardless of
the number of hours worked and regardless of the type of transportation actually used by the
worker. The deduction is a linear function of the km travelled above 24 (to and from work) but
the rate drops to half after 100 km. In 2005, for example, it was DKK 1.68 for each km above
24 but below 100 and 0.84 for each km above 100. The rate was changed each year and twice
in 2000. Moreover, as a part of a larger Danish reform in 1998 dubbed the Whitsun package,
there was an adjustment to give a lift for the low-paid.

Note that in order to construct a work distance measure, one needs to know the number
of days worked which is not observed. Therefore, it is assumed that everyone work 225 days a
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Figure B.2: Work Distance Distribution
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year.31 Note, however, that this only means that the work distance variable may be imprecise for
the actual distance to the work but still precise about the variable of interest that is the annual
km commuted to work. Figure B.2 shows the distribution of the constructed work distance
measure for the larger dataset from which I take my estimation sample; in the left panel, the
full distribution is showed. This clearly shows the censoring with a large mass point at zero.
The right panel removes these zeros and shows the remaining distribution. There is a clear
discontinuity at a work distance of 12 km, consistent with the fact that this is the threshold
for eligibility. For all the observations below 12 km, we know that their actual work distance is
larger than 12 km but that they must have worked fewer than 225 days. For example, individuals
with part time employment can be expected to fall there.

B.3.2 Fuel Prices

Figure B.3 shows the development in gasoline and diesel prices in Denmark in 2005 DKK. Prices
have generally been increasing and moreover, it appears that diesel prices were converging on
gasoline prices up towards 2008. Figure B.4 shows the price composition for both types of fuel;
the fixed tax rate (dubbed the “Energy Tax”, which is split up into a CO2 tax in 2005) is fairly
constant over the period with the exception of 1999 for gasoline and 2000 for diesel, where it
is increased by 12% for both fuel types. In other words, most of the variation in fuel prices in
Denmark comes from the product price. Figure B.5 shows the product price for Octane 95 and
Diesel fuel together with the Western Texas Intermediate crude oil price. This figure shows that
the prices have tracked the oil price very closely over the period, in particular for diesel fuel.

B.3.3 Car Characteristics

Figure B.7 shows the fraction of diesel cars in the register data (i.e. also data not included in
my estimation sample). It shows the increase in the diesel market share that appears to really
start increasing after 1997. The larger share of diesel cars with vintages in the 1980s can either
be due to higher market share there or due to a di�erent scrappage pattern for diesel cars then.

Figure B.8 shows the number of cars owned per household by year. The graph is based on
31The o�cial numbers for public sector employees in 2007–2010 were 224, 226, 225 and 228.
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Figure B.3: Real Price of Octane 95, 1980–2011
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Figure B.4: The Composition of the Price of Gasoline and Diesel Fuel
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Figure B.5: Gasoline and Diesel Product Price And Crude Oil Prices
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Figure B.6: Relative Fuel Prices
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Figure B.7: Diesel Share in Denmark by Vintage
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Figure B.8: Number of Cars Owned per Household
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a dataset containing all households and cars. The figure indicates that even though there has
been an increasing share of households owning more than 1 car, the share is still extremely small
compared to for example the US.

Figures B.9–B.11 show the development in median characteristics of sold cars. The most
notable development is the increasing trend in weight for both types of fuel that has occured all
the way back to the 80’s. In this paper, weight proxies for the quality of the car by measuring
comfort and the carrying capacity of the car. Similarly, fuel e�ciency has gone up dramatically
but here we see that while it has been somewhat monotone for gasoline cars, almost all the growth
for diesel cars occured in 1997–99. Two things are worth noting there; Firstly, only 17 diesel
cars are in the sample in 1997 so we are talking about very small numbers. Secondly, the advent
of the Common Rail injection technology which quickly became standard in all diesel engines
was the main reason for this. Apart from improving performance in terms of fuel e�ciency, it
also greatly improved the torque of the cars (which is not in my data) and changed the sound
signature, making it more appealing to many consumers (according to an car salesman I have
talked to).

The development in engine displacement, horse power and purchase price are much more er-
ratic. This underlines the advantage of the chosen empirical model where all these characteristics
are used in the household’s comparison across cars, rather than focusing on each characteristic
separately.

To better grasp the overall patterns in what car characteristics certain households end up
with, table B.4 shows the estimates from regressing each car characteristic on household de-
mographics. The results are much as one would expect with for example richer households
purchasing more powerful and luxurious cars. It also shows some ambiguity in the e�ect of work
distance — if males have a long work distance, they tend to prefer having a more comfortable
ride whereas females tend to go for a more fuel e�cient, smaller car.

The patterns shown in Table B.4 also show up clearly in the spatial patterns; Figure B.12
shows two maps of Denmark where the municipalities have been colored according to the average
of the work distance (the maximum within the household) of Danish car-owning households in
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Figure B.9: Median Characteristics Over Time — Weight and Fuel E�ciency
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Figure B.10: Median Characteristics Over Time— Engine Power and Displacement
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Figure B.11: Median Characteristics Over Time— Real Price (2005 DKK)
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Table B.4: Car characteristics of new cars
(1) (2) (3) (4) (5) (6)

Km/l Weight Diesel kW Displace Real price

p

fuel (O95) 0.415úúú -0.0193úúú 0.0410úúú -1.923úúú -4.645 -8612.1úúú

(19.33) (-10.84) (14.93) (-12.53) (-1.92) (-14.37)
GDP (2005=1) -11.39úúú -0.165úú -1.771úúú -3.053 -978.8úúú -244123.3úúú

(-17.05) (-2.98) (-20.71) (-0.64) (-13.01) (-13.11)
Age (m) -0.0136 0.00373úúú 0.000654 0.473úúú 4.907úúú 1520.1úúú

(-1.48) (4.88) (0.55) (7.18) (4.72) (5.90)
Age squared (m) 0.0000800 -0.0000430úúú -0.0000207 -0.00549úúú -0.0593úúú -17.83úúú

(0.78) (-5.03) (-1.57) (-7.45) (-5.10) (-6.20)
Age (f) -0.0400úúú 0.00491úúú -0.00118 0.335úúú 4.149úúú 1516.1úúú

(-4.89) (7.23) (-1.13) (5.73) (4.50) (6.64)
Age squared (f) 0.000306úúú -0.0000445úúú -2.68e-08 -0.00325úúú -0.0430úúú -14.48úúú

(3.30) (-5.80) (-0.00) (-4.92) (-4.13) (-5.62)
Work dist. (m) 0.0150úúú 0.000136úúú 0.00262úúú -0.00892úúú 0.555úúú 84.66úúú

(44.34) (4.86) (60.59) (-3.70) (14.59) (9.00)
Work dist. (f) 0.0178úúú -0.000444úúú 0.00238úúú -0.0512úúú -0.160úú -59.57úúú

(39.57) (-11.91) (41.42) (-15.95) (-3.16) (-4.76)
Income -0.000000245úúú 2.45e-08úúú -6.92e-09úúú 0.00000296úúú 0.0000434úúú 0.0166úúú

(-16.83) (20.33) (-3.71) (28.43) (26.49) (40.84)
Male inc % 0.00797 -0.000305 0.000721 0.00768 0.287 121.5

(1.42) (-0.66) (1.00) (0.19) (0.45) (0.78)
# kids -0.303úúú 0.0417úúú 0.0000115 1.244úúú 24.10úúú 7462.6úúú

(-37.23) (61.88) (0.01) (21.43) (26.33) (32.94)
Urban dummy 0.0198 -0.00707úúú -0.00564úú -0.754úúú -8.729úúú -2115.9úúú

(1.22) (-5.26) (-2.72) (-6.51) (-4.78) (-4.68)
Unemployed (m) 0.260úúú -0.0407úúú -0.00916úú -3.412úúú -53.62úúú -15345.8úúú

(11.16) (-21.06) (-3.07) (-20.47) (-20.41) (-23.59)
Unemployed (f) 0.170úúú -0.0146úúú 0.00574ú -1.426úúú -21.18úúú -5694.4úúú

(9.50) (-9.86) (2.51) (-11.14) (-10.49) (-11.40)
Linear time trend 0.434úúú 0.0181úúú 0.0449úúú 1.082úúú 14.93úúú 7397.0úúú

(43.37) (21.76) (35.06) (15.11) (13.23) (26.49)
Constant 21.45úúú 1.653úúú 1.231úúú 65.59úúú 2230.9úúú 404939.1úúú

(42.70) (39.69) (19.16) (18.28) (39.43) (28.91)
N 128910 128910 128910 128910 128910 128910
For variable labels, m denotes male and f denotes female.
Same sample as the one used for the two-period model.
(1) Fuel e�ciency in km/l, (2) weight in tons, (3) LPM for diesel,
(4) engine power in kW and (5) displacement in cc.
ú p < 0.05, úú p < 0.01, úúú p < 0.001
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Figure B.12: Spatial Illustration: Municipality-averages of Work Distance and Diesel Frequency
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the left panel and the frequency of diesel cars in the right panel. These maps are drawn for a
larger sample containing all car-owning households. The patterns show two interesting aspects.
Firstly, there positive relationship between work distance and diesel ownership is in line with
both urban areas and rural areas of Sealand (the big western Island); urban areas have low work
distances and low diesel shares and vice versa for the rural areas of Sealand. However, in the
Eastern part of the country, there appears to be low work distances and high diesel frequencies.
These areas have very di�erent employment patterns from the greater Copenhagen region, which
is most likely a part of the explanation.

B.3.4 Descriptive Evidence on Driving

Figure B.13 shows the driving distribution for diesel car drivers and gasoline car drivers. The
distribution for diesel car drivers is shifted strongly towards higher driving.

Figure B.14 shows median vehicle kilometers travelled (VKT) against median fuel price over
time for gasoline cars (left panel) and diesel cars (right panel). Both figures show that the typical
car purchased in later years ends up driving less than in earlier years and that fuel prices have
been increasing. This is consistent with a negative fuel price elasticity.
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Figure B.14: Median VKT vs Fuel Price Over Time for Gas and Diesel
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Figure B.15: Median VKT vs Price Per Kilometer (PPK) Over Time for Gas and Diesel
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The corresponding figures where the price per kilometer (PPK, p

fuel
jt

/e

j

) is used are shown in
figure B.15 and here the picture is much less clear picture because fuel e�ciency also increases
over time. This is precisely the selection e�ect at play where consumers are moving to more fuel
e�cient cars to counteract the increasing fuel prices.

Table B.5 shows the results from regressing VKT on PPK, car characteristics and household
demographics. The most central result is that the mean estimated PPK-elasticity depends
very strongly on whether a di�erent mean driving is allowed for diesel car households (which
decreases the mean elasticity from –.74 to –.30). This is further emphasized by the fact that the
elasticity is –0.16 when estimated on the gasoline sample only and –.39 on the diesel subsample.
Gillingham and Munk-Nielsen (2015) explore the heterogeneity in the fuel price elasticity on
household demographics and the interested reader is referred to that paper.

C Joint Estimation of the ⁄-parameter

In this section, I discuss the issue with the estimation of the logit error term scaling parameter,
⁄, and present an idea for estimating a more flexible extension of the model that might facilitate
joint estimation. I first discuss the problem, providing intuition about the ⁄ parameter and why
the maximum likelihood estimate is so high. I then argue that car fixed e�ects can be the cause
of the problem and that controlling for these may solve the issue of the high ⁄. In light of this,
I conclude with an outline a strategy for incorporating car type fixed e�ects into the model in
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Table B.5: VKT Regressions — Price per Kilometer (PPK) Elasticity
(1) (2) (3) (4) (5)

Simple Diesel dummy Year FE Only gas Only diesel

Price per km -50.50úúú -20.32úúú -16.82úúú -10.01úú -65.73
(-21.52) (-8.29) (-6.17) (-2.83) (-1.94)

GDP -41.98úúú -35.10úúú -57.10úúú -50.23úúú -82.38úúú

(-29.57) (-24.69) (-12.38) (-10.68) (-3.88)
Age (m) 0.518úúú 0.538úúú 0.536úúú 0.415úúú 1.256úúú

(10.62) (11.12) (11.09) (8.51) (6.15)
Age squared (m) -0.00777úúú -0.00792úúú -0.00789úúú -0.00677úúú -0.0138úúú

(-13.57) (-13.91) (-13.87) (-11.85) (-5.59)
Work dist. (m) 0.353úúú 0.348úúú 0.348úúú 0.333úúú 0.381úúú

(119.98) (118.89) (118.99) (104.54) (47.49)
Work dist. (f) 0.340úúú 0.334úúú 0.334úúú 0.356úúú 0.260úúú

(87.05) (85.83) (85.92) (84.04) (24.27)
Income -0.00000250úúú -0.00000239úúú -0.00000234úúú -0.00000231úúú -0.00000367úúú

(-19.67) (-18.89) (-18.54) (-18.68) (-4.55)
# kids 0.236úúú 0.223úúú 0.219úúú 0.128 0.515ú

(3.61) (3.43) (3.37) (1.93) (2.05)
Urban dummy -1.131úúú -1.106úúú -1.092úúú -1.262úúú 0.973

(-8.84) (-8.70) (-8.60) (-9.88) (1.80)
Unemployed (m) 0.492úú 0.438ú 0.459ú 0.565úú -0.499

(2.64) (2.36) (2.48) (3.03) (-0.64)
Unemmployed (f) -0.0700 -0.0930 -0.0784 -0.0474 -0.410

(-0.49) (-0.65) (-0.55) (-0.33) (-0.74)
Km/l 0.610úúú -0.257ú -0.118 0.117 -1.475

(6.07) (-2.51) (-1.02) (0.77) (-1.90)
Weight 0.0329úúú 0.0209úúú 0.0210úúú 0.0229úúú 0.0116úúú

(67.23) (36.60) (36.45) (38.60) (5.36)
Engine power -0.0368úúú 0.0426úúú 0.0428úúú 0.0483úúú 0.101úúú

(-5.52) (6.18) (6.19) (6.67) (3.82)
Engine size 0.0140úúú 0.00367úúú 0.00352úúú 0.00180úúú 0.00178

(33.71) (7.55) (7.23) (3.36) (1.14)
Diesel dummy 17.99úúú 18.09úúú

(40.22) (40.37)
Constant 28.02úúú 43.76úúú 66.88úúú 54.31úúú 157.5úúú

(10.49) (16.30) (11.82) (8.78) (5.85)
Year FE No No Yes Yes Yes

N 128007 128007 128007 114623 13384
R2 0.348 0.356 0.357 0.235 0.216
Avg. elasticity -0.744 -0.300 -0.248 -0.158 -0.392
In variable names, m denotes male and f denotes female.
Column 4 contains only gasoline cars and 5 only diesels.
Year FE: for each year, a dummy for whether the driving period covers the year.
ú p < 0.05, úú p < 0.01, úúú p < 0.001
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Figure C.1: Market Shares in the Characteristics Space

the spirit of Berry, Levinsohn, and Pakes (1995) for future research.
As mentioned in Section (4), I have chosen to normalize –2 = ≠1 and estimate ⁄. When I

estimate the model, I first estimate the reduced-form driving parameters subject to the normal-
ization –2. I then use these parameters as the starting values for the full, joint optimization.
However, the likelihood function is increasing in ⁄ up to the point where ⁄ is so high that the
model just predicts uniform choice probabilities for all choices. Recall that in logit models where
the choice-specific utilities are non-linear (for example the present model or dynamic discrete
choice models), the ⁄ is sometimes identified and then it acts as a smoothing parameter. In some
sense, it is analogous to the bandwidth in a Nadaraya-Watson kernel density estimator; in one
extreme, when ⁄ æ 0, the choice probabilities converge to an indicator function for the highest
utility choice, Pr(j) = 1{j = arg max

j

Õ
u

j

Õ}. In the other extreme, when ⁄ æ Œ, we choice
probabilities become uniform, Pr(j) = 1/|J |’j, where |J | is the number of choices available. In
intuitive terms, ⁄ indicates how precise the model is, since it does not alter the ordering of the
conditional utilities of the alternatives.

With this intuition at hand, it is easier to understand why the likelihood function is max-
imized for such a high value of ⁄. For given values of the remaining structural parameters,
the model will tend to assign similar choice probabilities to cars that are in the same region of
the choiceset. However, Figure C.1 illustrates that this is not the case in the data. The figure
shows a scatter plot of the cars that are available in the 2006 choiceset. The x-axis denotes fuel
e�ciency in km/l and the y-axis denotes weight in metric tons while the coloring of the dots
indicates the market share of each car in 2006. The figure shows that there are cars that are
very close in characteristics with very dissimilar market shares. This will all else equal point
towards characteristics not being important for determining the market shares of cars. However,
the cross-equational restrictions implied by the model structure are such that to reduce the im-
portance of the characteristics, the driving predictions will be altered. Therefore, I conjecture
that the high value of ⁄ is a way for the optimizer to reduce the importance of characteristics
in predicting market shares without resulting in a bad fit of the driving equation.
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If the explanation I have outlined above is correct, then controlling for car fixed e�ects should
solve the problem. However, the big question for future work on this is whether they will suck
up all the variation and result in a model where car choice becomes equally unresponsive to
changes in policy; something which a priori must be wrong in light of the stark changes in the
fuel e�ciency and the diesel share following the 2007 reform.

For future research, I will now outline a potential strategy for estimating an extension of the
model presented in this paper that allows for fully flexible car type fixed e�ects, u

own(j) = ›

j

.
This is in line with the agenda of the Berry, Levinsohn, and Pakes (1995) literature, emphasiz-
ing the importance of unobserved car characteristics correlated with price (and possibly other
characteristics).

This model with product-level fixed e�ects may be estimated in two ways; A direct approach
would be to simply estimate all the J≠1 = 1, 176 dummies with maximum likelihood. Estimating
such a large number of parameters would not be feasible using numerical derivatives, but with
analytic derivatives and the BHHH approximation of the Hessian, complexity only increases
linearly in the number of parameters.

An alternative approach is to apply a fixed point like that proposed by Berry (1994). Let
� : RJ≠1 æ RJ≠1 be the operator defined by �(›[i]) = (�1(›[i]), ..., �

J≠1(›[i])), where

�
j

(›[i]) = ›

[i]
j

+
ÿ

tœTj

È

jt

Ë
log s

data
jt

≠ log s

pred
jt
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where s

jt

is the market share for car j in year t, T
j

is the set of years where car j was available
and
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,

where N

t

is the number of households going on the market in year t. Letting ũ
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© u
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own(j),
the predicted market share is given by
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This gives rise to the following algorithm;

Algorithm: A Berry (1994) fixed point.

Initialization: Set ›

[0]
j

:=
q

tœTj
È

jt

log s

data
jt

and pick a reference car, j0, for which ›

j0 :=
0.

Iteration: Given ›

[i≠1], let ›

[i] = �(›[i≠1]). Continue until Î›

[i] ≠ ›

[i≠1]Î < ‘.

Recently, there has been some debate about numerical concerns with the implementations of
algorithms using nested fixed points such as Berry (1994); Berry, Levinsohn, and Pakes (1995);
Rust (1987). Dubé, Fox, and Su (2012) have emphasized the importance of using a tight inner-
loop tolerance (‘) to avoid numerical noise spilling out into the outer loop. They suggest using
the MPEC approach (Judd and Su, 2012). Instead, I follow the approach by Iskhakov et al.
(2015) and use analytic derivatives for the inner loop, replacing the fixed-point iteration shown
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above with a root-finding solver for the quadratic system of non-linear equations,

› ≠ �(›) = 0.

By using the analytic Jacobian of the operator �, which has a computationally simple form, I
find that the solver converges in 13 iterations to machine precision.

D Additional Results

Table D.1 shows the structural elasticities from the preferred specification. The results are
estimated based on a model with perfect foresight that allows random e�ects (c

i

”= 0). For the
presented set of estimates, –2 was fixed to ≠1, but very recently, I have successfully estimated
that coe�cient as well without it significantly changing the results.

Table D.2 shows the results from the baseline on the 2006 data as well as the 2007 coun-
terfactual implemented in 2006 (same as column (3) of table 6.1) and an additional simulation
of the 2007 reform where the pivot point of diesel cars is moved from 18km

/l to 20km
/l. The

motivation is that the pivot point for gasoline cars is 16km
/l but a typical diesel car drives about

4 km further per liter of fuel than a gasoline car. In that sense, the pivot of 20km
/l should provide

a better balance in the incentives.
In figure D.1 is shown the observed diesel share, the simulated diesel share from the model

and a counterfactual simulation where both fuel price time series are kept at the 1997 level. The
figure shows that the diesel share would have been higher in the later years if fuel prices had not
changed. Two important points should be noted; Firstly, since the model conditions on entry
into the new car market, raising or lowering fuel prices, for all cars will not change results as
drastically as if more households were allowed to switch into car ownership. Nonetheless, raising
fuel prices will lower expected driving and utility so given the convex utility in driving, some
consumers will move towards more fuel e�cient vehicles and therefore also diesel cars. This is
also why, in the structural elasticities in table 5.3 we saw that when all fuel prices go up by 1%,
the diesel share grows by 0.15%.

Secondly, the more important implication of holding fuel prices at the 1997 level is that
the relative price of gasoline to diesel is kept constant. Figure D.2 plots two time series. On
the left axis is the expected price of gasoline divided by the expected price of diesel (under
perfect foresight — i.e. the fuel prices that are driving expectations) for a household going on
the market in the given year and on the right axis is the predicted diesel market share for the
year divided by the observed share. The figure shows that the tendency of the model to over or
under-predict the diesel share is systematically related to the relative fuel prices. For example,
the predicted share has two particularly striking periods; In 99–00, the prediction moves from
over to under the observed share, coinciding with a sharp jump down in the relative price (diesel
caught up with gasoline). In 05, the model has a kink down, under-predicting the diesel share.
This coincides with a sharp jump down in the relative price from 117.9% to 110.9%, making
diesels less favorable. Note that the predicted to observed share is not shown for 1997 because
it is 432%. This extreme number is due to the observed share being quite close to zero in that
year.
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Table D.1: Estimated parameters
Fixed Parameters

Parameter Value
— 0.95
Â 1
⁄ 10000
Model: Perfect foresight, quasi-linear, random e�ects.

General Parameters
Parameter Estimate t

‡

x

16.093 (69.12)
‡

–

21.951 (31.77)
Demographics
“

z

–1z

Parameter Estimate t Estimate t

Constant 47.596 (35.22) – (–)
age -8.447 (-18.97) 8.901 (8.71)
agesq 7.363 (15.88) -15.168 (-14.39)
WDm 8.170 (18.95) 17.889 (69.45)
WDf 1.079 (19.46) 9.684 (108.20)
inc -9.457 (-31.44) -8.768 (-39.94)
nkids 1.453 (11.65) -0.458 (-2.93)
city -0.210 (-1.48) -1.412 (-10.09)

Car Parameters
Parameter Estimate t

–10 74.927 (14.88)
–20 -1.000 †
–0,weight 124074.734 (41.91)
–0,weight2 -5009.689 (-5.67)
–0,kw -413.653 (-25.53)
–0,kw2 5.114 (46.83)
–0,displace -194.172 (-0.15)
–0,displace2 4976.559 (13.12)
–0,diesel -4235.595 (-24.99)
–1,weight 18.876 (3.12)
–1,weight2 10.189 (5.64)
†: Fixed parameter, see section ??.
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Table D.2: Simulation of the 2007 Feebate Reform — The Role of the Diesel Pivot
(1) (2) (3)

Baseline 2007 2007 alt.
Consumer welfare

E(CS 114970.09 115989.89 115363.51
Total taxes

E(total taxes) 146623.83 134398.55 134482.53
Ownership tax

E(Regtax revenue) 106556.44 98175.80 97702.93
E(Owntax revenue) 11093.62 9813.59 9779.74

Fuel tax
E(O95 revenue) 25115.85 21695.96 23122.16
E(Diesel revenue) 3857.92 4713.20 3877.70

Driving/fuel use
E(VKT) 79663.89 78740.62 78323.44
E(litre O95) 4340.92 3749.84 3996.34
E(litre D) 891.32 1088.92 895.89
E(litre D|urban) 188.02 230.59 189.60
E(kg CO2) 12736.56 11844.36 11924.39

Characteristics
E(fe) 15.92 17.04 16.75
E(we) 1.70 1.64 1.64
E(kw) 77.08 70.07 70.72
E(displace) 1.65 1.54 1.54
E(% diesel) 18.49 24.48 19.63
E(% diesel|urban) 3.89 5.18 4.15
2007: The feebate reform of 2007 is implemented in 2006.
2007 alt.: As 2007 but the diesel pivot is 20 km/l instead of 18 km/l.

Figure D.1: Counterfactual Simulation: The Diesel Share Under Constant Fuel Prices
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Figure D.2: Relative Fuel Prices and Relative Market Share Error
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D.1 Static Expectations

Table D.3 shows the structural elasticities from the model estimated imposing the assumption
of static expectations. The elasticity of driving with respect to PPK is now –39% as opposed
to –30% for the perfect foresight estimates, indicating that to fit the data, the estimates must
emphasize monetary costs more in this version of the model. Similarly, when the fuel e�ciency
of all cars in the choice set go up by 1%, the expected fuel e�ciency goes up by 0.93% as
opposed to 0.90% with perfect foresight. In other words, consumers are still substituting away
some technological gains in fuel e�ciency for other engine characteristics but not as much as
earlier. And in particular, as PPK rises, the expected diesel share now falls. Finally, as the
weight of all cars goes up by 1%, the expected weight now goes up by 1.58%, as opposed to just
1.15% earlier and the expected driving response (allowing for changes on the extensive margin)
goes up by 1.71% as compared to 1.01% under static expectations.

In short, the estimates from the model imposing static expectations imply that money mat-
ters more to consumers and that the weight of the car also matters more for how much it is
driven.

Figure D.3 compares the diesel share predictions from the models that impose perfect fore-
sight and static expectations respectively with the observed diesel share. The movements in the
two are highly similar but there is a slight tendency in the later years for the static expectations
prediction to be slightly below the other.

Figure D.4 shows the 1997 counterfactual simulation using the estimates imposing static
expectations. It shows that the conclusion from the perfect foresight model still holds; The
counterfactual simulation where the 1997 reform was never imposed show a dramatically smaller
diesel share in all years (but still an increase over time).
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Table D.3: Structural Elasticities — Static Expectations
(1) (2) (3) (4) (5)

Baseline Fuel e�ciency Weight Fuel prices O95 prices
Consumer welfare

CS 64412.21 0.43 2.32 -0.43 -0.33
Total taxes

E(total taxes) 139431.76 0.05 1.24 -0.05 0.05
Ownership and registration tax

E(Regtax revenue) 101066.75 0.19 1.11 -0.19 -0.02
E(Owntax revenue) 9999.10 0.23 1.37 -0.23 0.03

Fuel/RUC tax
E(O95 revenue) 23801.00 -0.55 0.85 0.55 -0.04
E(Diesel revenue) 4564.90 -0.43 6.32 0.41 2.08

Driving/fuel use
E(VKT) 81183.20 0.39 1.74 -0.39 -0.21
E(litre O95) 4113.67 -0.55 0.85 -0.44 -1.03
E(litre D) 1054.66 -0.43 6.32 -0.58 2.08
E(litre D|urban) 225.43 -0.40 6.40 -0.61 1.99
E(kg CO2) 12624.18 -0.52 2.04 -0.47 -0.34

Characteristics
E(fe) 16.18 0.93 -0.18 0.06 0.15
E(we) 1.70 0.10 1.58 -0.10 -0.01
E(kw) 72.07 0.14 0.71 -0.14 -0.06
E(displace) 1.53 0.10 0.58 -0.10 -0.00
E(% diesel) 19.77 0.25 4.36 -0.26 2.08
E(% diesel|urban) 4.20 0.27 4.39 -0.29 1.98
Elasticities based on estimates imposing static expectations
(2): Relative changes when ej increases by 1% for all j.
(3): Relative changes when weightj increases by 1% for all j.
(4): Relative changes when fuel prices increase by 1%.
(4): Relative changes when gasoline prices increase by 1%.
All numbers are averages weighted with CCPs.
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Figure D.3: Diesel Share Predictions — Comparing the Perfect Foresight and Static Expecta-
tions Predictions
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Figure D.4: 1997 Counterfactual — Static Expectations
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