
The Information Matrix Equality

Lecture Note

Advanced Microeconometrics

Anders Munk-Nielsen

Fall 2016, version 1.1

In this note, we will prove the Information Matrix Equality (unconditional version).1 The
notation used herein is

s(w, ◊) © Ò
◊

log f(w; ◊),

H(w, ◊) © Ò
◊

s(w, ◊).

Here, s(w, ◊) is P ◊ 1 and H(w, ◊) is P ◊ P , and w is “the data”, which will typically be
(y, x). Throughout, ◊

o

will denote the true population value of ◊. We will start by proving
that the scores are equal to zero in expectation. Using this and some other results derived
along the way, we will show that the Information Matrix (the expected value of the outer
product of the scores, E[s(w, ◊)s(w, ◊)Õ]), is equal to the negative expected Hessian. This
result is important because it greatly simplifies the task of estimating the asymptotic variance.
Moreover, we can use the Information Matrix as an approximation of the (negative) Hessian.
This is convenient when we are optimizing the likelihood function numerically since we can
get a Hessian approximation using only the gradient (for each observation).2

1 A Useful Result

We start by proving a useful result, that the scores in expectation equal zero at the true
parameter values. In some sense, this amounts to proving that the true parameters are
identified, in M-estimator jargon, because it shows that the true parameters are a solution to

1
The proof follows the exposition by Walter Sosa-Escudero in unpublished notes dated April 13, 2009,

available online http://www.econ.uiuc.edu/˜wsosa/econ507/MLE.pdf (as of 2015).

2
You will not be required to go through the proof at the exam but you must understand the result and the

1

the first-order conditions. With relatively few additional assumptions, one gets from this to
uniqueness, but that is not the purpose of this note.

Proposition: The score vector is equal to the zero vector in expectation when evaluated at
the true parameters, i.e.

E
w

[s(w, ◊
o

)] = 0
P ◊1.

Proof: For any ◊, ˆ
f(w; ◊) dw = 1.

Take derivatives on both sides, then

Ò
ˆ

f(w; ◊) dw = 0.

Note that whenever we use the gradient-operator, Ò (“nabla”), the result is a P ◊ 1
vector. We will omit this explicit reference to dimensionality for brevity further along. If
we assume su�cient smoothness that we can interchange di�erentiation and integration
(see Newey and McFadden, 1994),

ˆ
Òf(w; ◊) dw = 0.

The score is defined as

s(w, ◊) © Ò log f(w; ◊) = Òf(w; ◊)
f(w; ◊)

… Òf(w; ◊) = s(w, ◊)f(w; ◊). (1)

(omitting the minus for a time) Inserting this,
ˆ

s(w, ◊)f(w; ◊) dw = 0. (2)

Note that by assumption of a correctly specified model,

f(w; ◊
o

) = p
o

(w),

where p
o

is the true data density. Thus, the integral becomes the true expectation over
the population distribution of w, when we evaluate it at ◊

o

. That is,

0 =
ˆ

s(w, ◊
o

)f(w; ◊
o

) dw = E [s(w, ◊
o

)] . ⌅

Remark: The final step is very important and at the core of maximum likelihood analysis.

2

Recall that f(w; ◊) is a family of densities for w, indexed (or parameterized) by ◊. How-
ever, our assumption about a correctly specified model implies that when we evaluate
them for ◊ = ◊

o

, then it becomes equivalent to the true data density, p
o

(w). Therefore,
the final equality occurs because for any function, g : R æ R, we define the expectation
of g(w) as ˆ

g(w)p
o

(w) dw © E[g(w)].

2 The Information Matrix Equality

Proposition: (The Information Matrix Equality) The negative expected value of the Hessian
matrix is equal to the expected outer product of the scores, i.e.

≠E [H(w, ◊
o

)] = E
#
s(w, ◊

o

)s(w, ◊
o

)Õ$.

Note that s(w, ◊
o

)s(w, ◊
o

)Õ is the P ◊ P outer product of the gradients.

Proof: Omitting arguments to functions, let us take derivatives on both sides of (2), we
obtain

Ò
◊

0 = Ò
◊

ˆ
sf dw

=
ˆ

Ò
◊

(sf) dw

=
ˆ

fÒs + sÒf dw

=
ˆ

fÒs dw +
ˆ

sÒf dw

=
ˆ

fÒs dw +
ˆ

ssf dw,

where we have used equation (1) to say that Òf = sf . Note that for the term “ssf”,
we have omitted a transpose for the score — it should be the outer product ssÕ, which
is P ◊ P , which we will be explicit about in the following. We observe, again, that
when ◊ = ◊

o

, we are integrating wrt. p
o

(w), which is the same as taking a conditional
expectation. Using the definition that Òs(w, ◊) © H(w, ◊),

≠
ˆ

H(w, ◊
o

)f(w; ◊
o

) dw =
ˆ

s(w, ◊
o

)s(w, ◊
o

)Õf(w; ◊
o

) dw

… ≠E [H(w, ◊
o

)] = E
#
s(w, ◊

o

)s(w, ◊
o

)Õ$. ⌅

3

2.1 Implications for Variance Estimation

This result is incredibly useful for maximum likelihood estimation (MLE). Normally, in order
to obtain standard errors for an M-estimator, one needs both the average outer product of the
scores, B̂, and the average Hessian, Â, to obtain the variance estimator using the “sandwich
formula”, V̂ = 1

N

Â≠1B̂Â≠1. But for MLEs, it holds that A
o

= B
o

, so we can estimate the
variance as either V̂ = 1

N

Â≠1 or V̂ = 1
N

B̂≠1.3

Suppose we have coded up a model in Matlab, where the function Q(theta) returns the
sum of the negative log likelihood, given by a function called, say, mle.criterion(y,x,theta).
Then we may use the following code to obtain standard errors directly from the built-in op-
timizer, fminunc;

1 % sum of negative log likelihood contributions

2 Q = @(theta) sum(mle.criterion(y,x,theta));

3 % choose some starting values

4 theta0 = zeros(P,1);

5 % find the minimum

6 [thetahat,nll0,flag,out,grad,hess] = fminunc(Q,theta0);

7 % estimate of covariance matrix

8 A = hess/N;

9 cov = 1/N

*

Aˆ≠1;
10 % standard errors

11 se = sqrt(diag(cov));

To obtain the outer product of the scores, B̂, we need to use the criterion function that
returns the likelihood in N ◊ 1 vector format (in M-estimator jargon, we usually call this
function q(y, x, ◊)). Then we need some function that can return the scores in an N ◊
P matrix, where P = dim ◊. Such a function should take as inputs fhandle, a function
“handle”, and x0, the point at which to do the derivative. Suppose the function is called
estimation.centered grad(fhandle,x0). Then the code might be:

1 % create function handle

2 q = @(theta) mle.criterion(y,x,theta);

3 % compute finite≠difference in N

*

P format

4 s = estimation.centered grad(q,thetahat);

5 % covariance matrix

6 B = s'

*

s/N; % avg. outer product of the gradients, K

*

K

7 cov = 1/N

*

Bˆ≠1;
8 % standard errors

9 se = sqrt(diag(cov));

3
Note that the information matrix equality is formulated for the (positive) log likelihood but the A and B

matrices are defined for the negative log likelihood, hence the seemingly omitted minus in “A
o

= B
o

”.

4

5

	A Useful Result
	The Information Matrix Equality
	Implications for Variance Estimation

