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Abstract

This note introduces unconstrained numerical optimization and its use in Python.
The note is structured with the intention that details can be skipped if the reader is not
interested in them. The example in Section 4 will illustrate how the optimization theory
works in practice in Python and in particular give an example where it does not work and
explain why. Section 5 is intended to be used for quick reference when things go awry.
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1 Introduction

In this note, we will consider the problem,

min
x
f(x). (1)

Note that any maximization problem can be turned into a minimization problem by minimiz-
ing −1 times that function, so it is completely general. The formulation nests M-estimators
directly, for example the likelihood function can be written as the minimization problem,

min
θ
N−1

N∑
i=1
− log l(θ|yi, xi),

where (yi, xi) is data for observation i and l is the likelihood function. To make notation
simpler to read, we will subsume the average in this note and just work with a function
f . Note that in most econometric applications, the objective will also be a function of data
(like yi and xi above), but this is kept fixed throughout estimation, so we only consider the
objective as a function of parameters.

Throughout this note, we will be discussing methods for finding local optima. It can be
proven that no algorithm can be guaranteed to find the global optimum of a function unless it
visits every single value of x with positive probability. Intuitively, this can be seen in Figure
1: This function is essentially the quadratic x 7→ x2, but extended with a “blip” down as
x → 1. The function attains the global minimum just before this blip and one can imagine
how hard it would be to find it. In general, the only weapon against local optima is to use a
multi-start procedure, starting the optimizer from manay different starting values and picking
the best local optimum.

Optimizers fall into two overarching groups;

1. Gradient-based,

2. Gradient-free.

The Nelder-Mead algorithm is the only example of a gradient-free optimizer that will be
discussed herein. From personal experience, gradient-based optimizers are faster but require
the problem to be “nicer” (i.e. more smooth, look more like a polynomial). The Nelder-
Mead algorithm is typically very useful when the starting values are bad or the problem is
difficult, e.g. if complicated calculations are involved which might result in roundoff error,
producing noise in the evaluation of f . However, be warned that if you have an error in your
criterion function, it will often cause trouble for the more fine-tuned gradient-based whereas
Nelder-Mead will happily work on your weird error-filled function which is most likely not
well-behaved or convex.
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Figure 1: Local vs. Global Optima: f(x) = x2 + exp
{
− 1

[100(x−1)]2
}
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Note: The function attains its global min at x ∼= 0.996 (0.9933) whereas the local minimum
at x ∼= 0.0001 yields 0.9999. We can imagina any well-behaved function having this type of
local “blip” down, which would make it impossible to find for the kinds of optimizers we discuss
herein. (Formally, the function is undefined at x = 1, although limx→1 f(x) = 1.)

We start by discussing gradient-based methods and then turn to a brief discussion of the
Nelder-Mead algorithm in the end. Table 1 gives an overview of the optimizers we will cover.

2 Gradient-based Optimization

Intuitively, one can think of the core step of an optimization problem as: given an initial point
x0, what is our best guess of the minimizing value of x? In other words, what should the next
value of x be. Most methods rely both on the slope and curvature of the function at x0 (i.e.

Table 1: Overview of optimizers

Newton BFGS BHHH Nelder-Mead Steepest Descent
method User written BFGS CG Nelder-Mead n.a.
Option – [default] Provide user-

written Hessian
Gradient used X X X ÷ X
Hessian used X X X ÷ ÷
Step f ′(·)/f ′′(·) f ′(·)/f ′′(·) f ′(·)/f ′′(·) Heuristic γf ′(·)
Hessian Numeric Iterative updating Outer product Not used Not used
Best for Nice f but Nice f Likelihood Nasty f Non-convex or

weird Hessian estimation non-quadratic f
Iterations Medium Few Few Many Many
Globalization Line search Line search Line search n.a. Line search
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first and second derivatives). The exception is the steepest descent method, which only relies
on the first derivative.

2.1 Steepest Descent Methods

The steepest descent (also called gradient descent) algorithm relies only on the first-derivatives
of f at xo. It looks at the slope of f and moves downhill. The challenge is how far to go. If
we just keep taking tiny steps downhill, we will eventually reach a local minimum. However,
it may take very long for us to get there. Therefore, the step we take is simply proportional
to the derivative, i.e. for x ∈ R1,

x1 = −γf ′(x0),

and for vector-valued x,
x1 = −γ∇f(x0).

The step size, γ, is allowed to change with every iteration. It is typically chosen based on line
searching, outlined in Section 2.5.

The algorithm can be awfully slow. In the example in Section ??, the steepest descent
algorithm requires 56,649 function evaluations to do find the minimum, compared to just 20
function evaluations for the default newton-based algorithm. The gradient descent algorithm
is simple to understand but is almost always outperformed by Newton-based algorithms.
Except in the case of highly non-quadratic or non-convex problems; in those cases, the Hessian
is not at all informative about where to go whereas the gradient descent algorithm will just
keep going down hill.

2.2 Newton-based Methods

To do this, we will form a 2nd order Taylor approximation to f and set the next x to be the
minimizer for that approximation. A 2nd-order Taylor approximation is the best quadratic
function that approximates f in a neighborhood of x0. Once we have taken the step and
gone to the x that minimizes the quadratic approximating function, we will form a new
approximation at this new value of x and proceed in that manner until we arrive at a stationary
point (i.e. where the gradient is the zero vector). In Table 1, it says that the Newton-based
optimizers (Newton, BFGS, BHHH) work well when "f is nice". What is meant by this is
that the function cannot be too far from a quadratic function and should in particular be
convex (most places). If f is very far from a quadratic function, of course the quadratic
approximation will be poor and we are in trouble.

Let us start by considering the simplest version of the problem where x is a scalar. Then
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Figure 2: Function with Quadratic Approximation
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the approximating quadratic function that we are minimizing is

min
x∈R

f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2.

Figure 2 illustrates this graphically. We are constructing a quadratic function that at the
point x0 has the same slope as f , namely f ′(x0), and the same curvature, f ′′(x0), and then
we move to the bottom of this function and assign our new iterate, x1, to the x-value here.

In the more general, x is a P × 1 vector, and the problem takes the form

min
x∈RP

f(x0) +∇f(x0)′(x− x0) + 1
2(x− x0)′∇2f(x0)(x− x0).

Here, ∇f(x0) is the P × 1 vector of first derivatives (called the gradient), so that the term
∇f(x0)′(x−x0) is scalar. The Hessian matrix, ∇2f(x0), is the P×P matrix of 2nd derivatives,
so the last term is a quadratic form and therefore also scalar. Alternatively, we may formulate
the model in terms of the step, which we can write as s ≡ x− x0, and the problem becomes

min
s∈RP

f(x0) +∇f(x0)′s+ 1
2s
′∇2f(x0)s. (2)

Intuitively, when we replace (1) with (2), we are finding the quadratic function (2nd-
order polynomial) that is the best approximation to f at the point x0. Then we minimize
that function rather than the original f . Therefore, if f is locally concave, we will go in
the wrong direction. Similarly, if f is highly “non-quadratic” (so that the third term in the
Taylor expansion is very important), the approximation is very poor and we may for example
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Figure 3: Local Non-quadraticness Leading to Overshooting
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“over-shoot” and take a too long step. To avoid these problems, the quadratic optimization
problem (2) should be accompanied by a globalization strategy; this is a way of trying to
avoid overshooting (and sometimes also undershooting; then it is called a greedy globalization
strategy). See Figure 3 for an example where the function is locally very non-quadratic at
x0, resulting in the quadratic approximation overshooting the minimum. Intuitively, the
gradient and Hessian of f will give us a direction along which we will search for candidate
improvements. We will first try the most obvious candidate, but if that turns out not to result
in an improvement, the globalization strategy will indicate how we should proceed.

You may be wondering why we only choose a quadratic approximation to the true function
and do not proceed to a cubic (3rd-order Taylor approximation) or even higher. The reason
is that minimizing a quadratic function is very simple and requires only linear algebra, which
is extremely fast. Going to a higher-order polynomial would require us to do a more complex
optimization problem to minimize the approximating function, which defeats the purpose of
minimizing a local approximating function.

In order to come up with an algorithm, we will now need to do decide on three components;

1. How to choose the step, s,

2. A globalization strategy,

3. A method for minimizing the quadratic function.

Let us postpone the globalization strategy for a while and focus on the other two. We will first
discuss the scalar case, then consider the vector case and finally we will add the globalization
strategy.
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2.3 Scalar x, no globalization strategy

In the simplest case, we are solving the problem

min
s∈R

f(x0) + f ′(x0)s+ 1
2f
′′(x0)s2.

Interior solutions will satisfy the first-order conditions,

⇒ FOC : f ′(x0) = −f ′′(x0)s

⇔ s = − f
′(x0)

f ′′(x0) , (3)

assuming that f ′′(x0) 6= 0. The intuition is that f ′(x0) gives the direction while f ′′(x0) tells
us how large of a step, we should take; when f ′(x0) < 0, the function slopes downwards and
we should take a step in the positive direction in order to reduce the function value (and vice
versa). When f ′′(x0) is small (but positive), it means that the slope of f only changes very
slowly, indicating that we should be taking a larger step (and vice versa).

2.4 Vector x, no globalization strategy

Consider the case where x ∈ RP . Here, the first-order conditions necessary for interior
solutions to (2) yield

FOC : ∇f(x0) = −∇2f(x0)s.

If f is strictly convex at x0, then ∇2f(x0) is positive definite and we can invert the equation
no obtain

s = −[∇2f(x0)]−1∇f(x0). (4)

This is simply the vector-generalization of (3) and the intuition is the same. A very simple
minimal working minimizer might thus look like below.

1 def min_newton(f, grad , hess , x0 , maxit ):

2 ’’’ minimize function using quadratic approximations ’’’

3 x = x0 # initialize

4 for it in range(maxit):

5 g = grad(x)

6 H = hess(x)

7

8 # compute step

9 step = -np.linalg.solve(H,g)

10 x = x + step

11

12 # check convergence

6



13 if np.max(np.abs(g)) < tol:

14 break

15

16 return x

Note that the minimizer never actually uses the function itself! Therefore, it does not
check if the new updated value of x results in an improvement or not. We will get back to
this later when we discuss how we might expand the algorithm to check this and what to do if
the new candidate results in a worse function value (this is called the globalization strategy).

Next, note that the following two lines are equivalent

1 # two equivalent ways of computing the step

2 step = np.linalg.solve(H,g) # computationally fast

3 step = np.linalg.inv(H) @ g # computationally slow

One should avoid calculating the inverse of the Hessian unless needed – it is a waste of
computational resources.1 The “solve” function solves linear systems of the form As = b for
s, where A is P × P and s, b are P × 1. It turns out, that this system can be solved without
ever computing A−1 and thus saving computational time and memory resources.2

In spite of using solve, the P × P system may become unwieldy if P is too large. Con-
sequently, there are alternative ways to solve that can be even smarter:

• Cholesky method,

• Conjugate gradient method.

Both methods are computationally superior to finding the inverse of the Hessian as in (4)
and yield almost identical solutions. The Cholesky method is a more direct method whereas
the conjugate gradient method iteratively computes candidate solutions that become better
successively. When P is large, the Cholesky method may be slow and the conjugate gradient
method will speed things up. This is applicable if the evaluation of f is generally very fast
(several evaluations per second). For most econometric problems, it is not important.

If f is non-convex, then we may not even be able to solve the equation. Similarly, if our
numerical calculation of the Hessian is poor, we may get trouble with finding the step size
in equation (4). In these cases, it is generally advisable to check for errors in the code that
calculates f and otherwise maybe try to see if a gradient-free optimizer can break free of
the locally non-convex area. There are alternative methods for dealing with the inversion in
the case of non-positive definite Hessian matrices, but the general advice is to hope that the
problem disappears as we get towards the minimum.

1In Matlab, you would write s = −hessian\gradient.
2When A is positive definite, one can find a lower triangular matrix L such that A = LL′ and find s =

(L′)−1L−1b, which is computationally far simpler.
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2.5 The Line Search Algorithm

The intuition in the line search algorithm is that we search for the optimal step along the
one-dimensional line indicated by (4). That is, we choose the step

s = −λ[∇2f(x0)]−1∇f(x0),

where λ > 0. Typically, we start out with λ = 1 and if that fails, we try λ = 0.5, then
λ = 0.25, etc. If the problem is highly non-convex and has a very small Hessian locally, then
it may result in s being too large and dampening it with λ < 1 can then help. This approach
is known as the “backtracking Armijo line search”. If one implements a “greedy” version of the
line search, it could also be possible to experiment with λ > 1 but that is not the standard
case; the primary purpose of the line search is to avoid situations where we overshoot the
minimum and end uphill anyway. Figure 3 illustrates such a case of overshooting; note how
the objective function does not change much at the initial point (low Hessian). This is the
non-quadraticness that results in the too large step.

If it is not possible to find an improvement this way, the optimizer gives up eventually. It
the returned dictionary will have success set to False and have the following message:

message: ’Desired error not necessarily achieved due to precision loss.’

This problem can happen for many reasons. If you are in a local non-convex region, you can
switch to Nelder-Mead to see if it can break free. Otherwise, it can be a sign of errors in your
function, outliers in your dataset resulting in loss of numerical precision, etc.

There are alternative implementations of the line search where one requires not only a
decrease in f , but a sufficiently large decrease in f according to some inequality. This results
in a rule for whether or not to accept any proposed step by the algorithm.

2.6 The Trust-region Method

The idea is similar to the line search algorithm in that we want to avoid the optimizer taking a
huge step and overshooting the true minimum. Instead of searching for the optimal step size,
the trust-region restricts the range of s-values that we search for in the quadratic problem,
replacing (2) with the constrained quadratic problem

min
s
f(x0) +∇f(x0)′s+ 1

2s
′∇2f(x0)s, (5)

s.t. ‖s‖ ≤ ∆,

where ∆ is the trust region’s radius. Note that the constraint defines a ball in RP if the
Euclidean norm (the typical distance), ‖·‖2 is used. A trust-region algorithm now requires
two more ingredients,
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1. A method for solving the constrained quadratic program (5),

2. A rule for updating ∆.

There are many linear algebra methods for solving such problems and since they will not be
the computational bottleneck in typical econometric applications, we will not worry about
them here. The rule for updating the radius will be based on a comparison of the realized
decrease achieved in f after taking the step compared to the “expected decrease in f” (this
latter bit of course requires some model). If the decrease is smaller than expected, the radius
is increased and vice versa.

2.7 Gradients

No matter the choice of globalization strategy, both the line search and the trust region relies
on a gradient vector, ∇f(x0), and a Hessian matrix, ∇2f(x0). In this section, we cover the
gradient and in the next section the Hessian.

There are generally two methods for obtaining the gradient;

1. Analytic gradient (more precise, but costly in human computational time),

2. Numerical gradient (using some finite-difference approximation).

Generally, the analytic gradients are preferable if they are available but it can take time to
code them up and verify their correctness. Using analytic gradients tends to result in more
precise and faster optimization. Additionally, optimization will be more robust to numerical
error in the evaluation of f (so long as the same error is not present in the evaluation of ∇f).
Below is an example where the Rosenbrock function has been coded in Python (the input, x,
should have two elements).

1 def rosen(x):

2 ’’’ evaluates the Rosenbrock function ’’’

3 return 100 * (x[1] - x[0]**2)**2 + (1.0 - x[0])**2

When gradients are not supplied analytically in Matlab, the optimizer will obtain them
using numerical differentiation. That is, it will approximate it by

∂f

∂xk

∣∣∣∣∣
x=x0

∼=
f(x1)− f(x0)

x1
k − x0

k

, (6)

where k ∈ {1, ..., P} is the index of the variable we are taking the derivative with respect to,
and x1

j = x0
j for all j 6= k but x1

k = (1 + h)x0
k (unless x0

k = 0, in which case x1
k = h). Note

that the step is relative — this is by far superior to using the same absolute step regardless of
the magnitude of each x0k. The finite difference in (6) is a forward difference; alternatively,
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one can use a centered difference, which is more precise but requires two evaluations of the
objective function for each parameter (so 2P evaluations), which is often too expensive to be
preferable. Instead, (6) re-uses f(x0) (which can also be supplied to the gradient calculator)
and thus only requires P + 1 evaluations.

Generally speaking, the step size should be set to

h∗ =
√
ε,

where ε is machine precision. In Python, this is obtained from np.finfo(float).eps:3

ε = 2.2204 · 10−16.

This is the distance in floating point arithmetic (how the computer represents numbers)
between 1 and the closest number on the real line in the positive direction. That is, if you
type 1 + eps/2, you will get precisely 1 (in fact, 1 + eps/x for any x>1 will return just 1).
Since there are 52 bits available to represent the number, ε = 2−52.

Why is it then optimal to choose h = h∗? This is because with finite differences, there are
two sources of error:

1. Approximation error,

2. Roundoff error.

The first error comes from the fact that we are using a finite difference approximation. As you
may recall from basic calculus, the true derivative at the point x0 is the limit of the forward
differences in (6) when h→ 0. The second source of error is perhaps new to many economists
and comes from the fact that a computer cannot represent all the real numbers and therefore
makes roundoff error. This problem becomes particularly bad when the numbers we operate
on are extremely small (such as subtractions between numbers that are very close or division
by very dis-similar numbers). In the subsection below, we will discuss this more and consider
what h will optimally balance these two errors off. The general rule of thumb is to choose
h = 10−8, which is also (close to) the default in most software packages. If the function is very
complicated and involves many steps that might lead to roundoff error, it may be advisable
to work with a larger step size, e.g. h = 10−6, because the approximation error may be much
larger in that case.

2.7.1 Optimal Step Size h

Let us first try to understand roundoff error better. It comes from the fact that the computer
works with finite precision. Not every single real number can be represented in the computer’s

3In Matlab, it is the builtin variable, eps.

10



Figure 4: Approximation Error and the Choice of h

memory. Instead, it will constantly be choosing the closest number to the ones it can to the
ones we ask it to store (some numbers of course coincide and luckily, for example all the natural
numbers are among such). For example, in Python, with eps = np.finfo(float).eps,

10 + eps− 10 = 0,

because the number 10 + eps cannot be represented in machine precision. However,

10− 10 + eps = 2.2204e-16,

so the sequence of operations matters when working with numbers on a computer. It turns out
that in particular subtraction and division can cause problems on a computer. So the smaller
the number we are dividing by and the closer the numbers we are subtracting, the larger the
roundoff error. This is why we should not set h too small. Figure 4 shows the approximation
error in a finite difference approximation to the derivative of the function f(x) = x2 at x0 = 1
for different choices of h. On the right hand side, the error is dominated by the approximation
error (and it appears to be a smooth function in h). On the left hand side, it is dominated
by roundoff error (and that error looks much more jittery and unexpectable, as one might
suspect).
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2.8 Hessian

There are three ways in which to obtain the Hessian:

1. Analytic Hessian,

2. Clever updating schemes (e.g. the BFGS),

3. Using an approximation derived from theory (e.g. the BHHH for Maximum Likelihood),

4. Numerical Hessian.

The analytic Hessian is obtained by doing derivatives with pen and paper (or with some
symbolic mathematics software, like Maple), and coding them up as a part of the criterion
function. From personal experience, it is not simply the case that the the analytic option is al-
ways better. Mainly because it is extremely time-consuming to derive the Hessian analytically
and very hard to verify that it has been done correctly.

In the other extreme, the fully numerical Hessian is easy to use because it is always
available; we just take finite differences of the finite differences (essentially using equation (4)
P times for each of the P entries in the gradient). However, it is costly to evaluate using finite
differences, requiring P 2 evaluations of the f function. This is why in Table 1, it says that
the pure Newton method is medium-costly; it might get to the minimum in a low number of
iterations, but at each step, it will have to evaluate the objective function P 2 times in order
to obtain the Hessian.

In between these two extremes are the BFGS updating scheme and the BHHH approx-
imation. The BHHH algorithm uses an approximation to the Hessian that relies on the
gradient only. The approximation is only valid in certain models, most notably maximum
likelihood. The BFGS algorithm is the default in scipy.optimize.minimize (and in Matlab
in fminunc). It uses information on the current and previous x and ∇f to make an informed
guess as to what the Hessian is. The BFGS algorithm turns out to perform extremely well
in practice for a surprisingly wide class of optimization problems. In the following two sub-
sections, we will discuss the BFGS updating scheme and the BHHH Hessian approximation.
The finer mathematical details of the BFGS algorithm are not required exam knowledge; only
an intuitive understanding is required.

2.8.1 BFGS

The standard implementation of the unconstrained optimizer in scipy, minimize, uses the
BFGS updating scheme (named after Broyden, Fletcher, Goldfrab and Shanno). This, and
other updating schemes like it, consists of using the gradient from the current and the previous
iterations to construct an informed guess as to what the Hessian might look like. Specifically,
the BFGS approximates ∇f(x0) by the matrix H0. This matrix can be initialized to be the
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identity matrix. Then when the step, s, has been found (subject to the globalization rule,
line search or trust region), the updated Hessian, H1, is constructed as

H1 = H0 + 1
y′s

yy′ − 1
s′H0s

H0ss
′H0,

where y ≡ ∇f(x0 + s) − ∇f(x0).4 The main advantage of the BFGS approximation of the
Hessian is that it requires no additional evaluations of f in excess of what is already being
done, it merely requires us to store the previous gradient’s value. The update step for the
Hessian just requires linear algebra, which will typically be so fast that the total computational
time is unaffected since in general in econometric applications, the dimension of P is so low
that it is almost only the evaluation of f that is computationally costly.

In Table 1 it says that the BFGS works well when the function f is nice, whereas the pure
Newton algorithm also works well when the Hessian is weird. What I mean here is that it
might for example be the case that the Hessian of the objective function changes a lot when
x changes; in that case the updating scheme used by BFGS might not work that well and it
might be better to actually calculate the numerical hessian at each new point, x.

2.8.2 BHHH

The BHHH is an important algorithm for estimating likelihood models. It was first proposed
by Berndt, Hall, Hall and Hausman (1974), and it uses the average outer product of the scores
as an approximation to the expected Hessian. This approximation is only applicable when f
takes the form of a sum (or equivalently, an average), i.e.

f(x) = N−1
N∑
i=1

q(wi, x),

(recall that x plays the role of parameters, which we otherwise label θ, and wi is individual
i’s data) and when either q is the likelihood function so that the information matrix equality
is satisfied (which it always is for maximum likelihood) or q and the model structure is such
that the generalized information matrix equality is satisfied. In that case, the Hessian can be
approximated by

∇2
xf(x) ∼= N−1

N∑
i=1
∇xq(wi, x)′∇xq(wi, x),

4As a side-note, both the matrices yy′ and H0ss
′H0 have rank 1 and are symmetric. Together, they form

a rank 2 update of the Hessian.
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where ∇xq(·) denotes the 1×P gradient vector (of first partial derivatives, and the inner term
int he sum is thus the outer product of the scores, which is P × P .5 Thus, the BHHH step
becomes,

s = −
[
N−1∑N

i=1∇xq(wi, x)′∇xq(wi, x)
]−1 [

N−1∑N
i=1q(wi, x)

]
.

The approximation has the clear advantage that since we aldready calculated gradients, no
additional evaluations of the criterion function are required. However, it does require us to
store the criterion value for each observation, which we might not otherwise be doing. In
other words, we cannot use the gradient that comes out of fminunc to construct this outer
product of the scores.

In the context of maximum likelihood, this approximation works when i) we are close to
the true parameters, ii) the sample size, N , is large, and iii) the model is correctly specified.
For example, if the starting values are very bad, this may result in poor performance.

2.9 Termination

The optimization algorithm can terminate for a number of reasons;

1. Gradients are sufficiently close to zero,

2. Change in x is too small,

3. Change in f is too small,

4. Step size too small (line search or trust region radius failure),

5. Maximum iterations reached.

Only termination due to criterion 1 is truly satisfactory, since the necessary condition for
interior optimum is gradients being equal to zero. From that point of view, it seems strange
that it should be possible to converge to a point where gradients indicate a slope of the
function, but where the optimizer fails to decrease the function value along the direction
(termination due to 2, 3 or 4). One possible explanation in this case is that there is a
problem with the gradients. If there is numerical noise (roundoff error) in the function, then
perhaps increasing the step size for the numerical gradients might yield a better gradient
approximation. It might also be that the optimizer has gotten stuck in a local minimum or

5Essentially, the information matrix equality states that the expected value of the Hessian matrix (times a
scalar) is equal to the expected value of the outer product of the scores, i.e.

σ2
oE
[
∇2
θq(w, θo)

]
= E

[
∇θq(w, θo)′∇θq(w, θo)

]
,

where θo denotes the true minimizing parameters (x throughout the rest of this note). The equation is discussed
in Wooldridge (2010; p. 417).
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a local non-convexity. In that case, try using a gradient-free optimizer for a few iterations to
see if it can break out of such a local problematic area.

The default maximum iterations in Python is 200P . If the optimizer terminates due to
criterion 5, the obvious solution is to just provide more iterations. Generally, econometric
problems can be much less well-behaved than the simple analytic functions studied in the
optimization literature. In particular when the starting values are bad.

3 Gradient-free Optimization

The Nelder-Mead method or the Simplex method is an optimization algorithm that does
not rely on gradients. Its theoretical properties are much poorer than those of gradient-based
optimizers; for example, once a gradient-based optimizer gets within the “region of attraction”
of the true minimizer, quadratic convergence kicks in. This means that the distance to the
truth will be doubling the exponent, e.g. 10−1, 10−2, 10−4, 10−8. No similar theoretical results
hold for the simplex algorithm, so it tends to use a lot of steps to get the final distance covered.
This is why it says in Table 1 that the algorithm is computationally costly. Each individual
iteration it takes requires only a single evaluation of the objective function, but it typically
takes many many more iterations than the Newton-based solvers.

The simplex algorithm works by always keeping track of P + 1 points, {(xp, f(xp))}P+1
p=1 ;

such a structure is called a simplex, hence the name. Intuitively, the algorithm then keeps
moving away from the point that is the highest (i.e. the worst point). If the algorithm sense
that it’s moving in a good direction, it will be “expanding” the simplex, taking bigger and
bigger steps. When it encounters non-improvements in the direction of the lowest point, it will
instead be shrinking the simplex points towards the lowest one. If you google Nelder-Mead,
there are plenty of youtube videos and GIF illustrations to show examples of the optimizer
at work to aid the intuition of how it functions.

The termination criteria will naturally not involve gradients; the algorithm only terminates
if

1. The change in f is sufficiently small (default 10−4),

2. The change in x is sufficiently small (default 10−4),

3. Maximum iterations have been reached (default is 200P ).

Naturally, the third is not a satisfactory termination message. However, since the simplex
algorithm can be used very effectively to break free of local minima or areas of non-convexity,
you may find it useful to be switch to Nelder-Mead for a few hundred iterations before switch-
ing back to a gradient-based method. In the following section, the specific details of the
algorithm is presented.

15



3.1 More Details

The precise details of the Nelder-Mead algorithm are shown in Algorithm 1. These details
are not required knowledge but to satisfy the curious reader.

The algorithm will terminate when either the change in x or f(x) becomes sufficiently
small. This is computed as

tolerance measure in x : ‖xg+1 − xg‖∞ < xatol,

tolerance measure in f : |f(xg+1)− f(xg)| < fatol,

where the “infinity norm” for vectors is ‖x‖∞ ≡ maxk |xk|.
The Nelder-Mead algorithm takes a lot of heat from mathematicians for not having nice

convergence properties, but it is surprisingly robust in practice. In particular, it will always
result in improvements, even with a locally non-convex criterion function. However, it can
spend an inordinately large number of iterations to achieve final convergence, whereas Newton-
based optimizers are very fast once they get close to the optimum (known as the “domain of
attraction”, where quadratic convergence kicks in, assuming the function is well-behaved).

4 Example: The Rosenbrock Function

In this section, we will consider the minimization of the Rosenbrock function and compare
how well gradient-based and gradient-free methods do at finding the global minimum.

The function is defined by

f(x1, x2) = (x2 − x2
1)2 + 1

2(1− x1)2.

The function is shown in Figure 5 along with the global minimum at x = (1, 1) and the
starting value we will be using at x0 = (−1.5,−4). In Python, the function along with it’s
gradient vector and Hessian matrices are computed as follows

1 def rosen(x):

2 return .5*(1 - x[0])**2 + (x[1] - x[0]**2)**2

3

4 def rosen_grad(x):

5 ’’’ returns the vector of 2 partial derivatives ’’’

6 return np.array (( -2*.5*(1 - x[0]) - 4*x[0]*(x[1] - x[0]**2) ,

7 2*(x[1] - x[0]**2)))

8

9 def rosen_hess(x):

10 ’’’ returns the 2*2 matrix of second derivatives ’’’

11 return np.array (((1 - 4*x[1] + 12*x[0]**2 , -4*x[0]), (-4*x[0], 2)))
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Algorithm 1 Nelder-Mead

1. Order the points in order of function value, f(x(1)) ≤ · · · ≤ f(x(P+1)) (x(P+1) being the
worst).

2. Compute the centroid, x, as the average of all points except the worst,

x = P−1∑P
p=1x(p).

3 (reflexion). Compute the reflected point,

xr = x+ λ(x− x(P+1)),

where λ is a tuning parameter kept fixed, typically λ = 1.

If xr is better than the second-worst but not the best one we have at this stage — i.e.
f(x(1)) ≤ f(xr) ≤ f(x(P )) — then we replacex(P+1) with xr and go to step 1.

If xr is the best we have seen so far, go to step 4.
If xr is not even better than the second-worst, go to step 5.
If xr is worse than the worst point, go to step 6.

4 (expansion). If the reflected point is better than anything we currently have — f(xr) <
f(x(1)) — then we compute the expanded point,

xe = x+ γ(x− x(P+1)).

Typically, γ = 2. Note that both xr and xe are on the 1-dimensional line through
x(P+1) and x. Replace the worst point (x(P+1)) by whichever of xr and xe gives the
best function value. This is a so-called “greedy” way of obtaining a faster convergence,
by speeding up in the direction of an indicated improvement.

5 (contraction). In this case f(xr) ≥ f(x(P )) so that the reflected point is no better than
the previous second-worst. The contraction step is performed using xr if this is better
than x(P+1) (outside contraction) or x(P+1) if this is better than xr (inside contraction):

(outside contraction) If f(x(P )) ≤ f(xr) < f(x(P+1)), compute

xc = x+ β(xr − x),

where e.g. β = 1
2 . If xc is better than xr, replace x(P+1) with xc and go to step 1.

If xc is not better than xr, go to step 6.
(inside contraction) If f(xr) ≥ f(x(P+1)), compute

xc = x+ β(x(P+1) − x).

If xc is better than x(P+1), accept it and go to step 1. Otherwise go to step 6.

6 (shrink). This steps shrinks all the sides of the simplex in the direction of the best point
so far by setting

x(p) := x(1) + δ(x(p) − x(1)), p 6= 1.

Typically, δ = 1
2 . After this step, go to step 1.

17



Figure 5: The Rosenbrock Function
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4.1 Newton without Globalization

Let us consider the simplest possible implementation of a Newton-based minimizer without a
globalization strategy.

1 x = np.array ([-1.5, -4.0])

2

3 # print initial info

4 norm = np.max(np.abs(rosen_grad(x)))

5 print(f’it=0, {x}, {norm}, {rosen(x)}’)

6

7 for it in range(1,maxit):

8

9 # compute next step

10 g = rosen_grad(x)

11 h = rosen_hess(x)

12 step = np.linalg.solve(h,g)

13 x = x - step

14

15 # check convergence

16 norm = np.max(np.abs(g))

17 print(f’{it=}, x=({x[0]}, {x[1]}),

18 norm={norm} f(x)={ rosen(x)}’)

19 if norm < tol:

20 print(f’Convergence achieved!’)

21 break

This results in the following output, which is visualized in Figure The progress of the
optimizer is shown in Figure 6.

1 it=0, x=( -1.5000, -4.0000), norm= 40 f(x)= 42.19

2 it=1, x=( -1.4038, 1.9615) , norm= 2.456 f(x)= 2.889

3 it=2, x=( 0.9143 , -4.5378), norm= 19.57 f(x)= 28.88

4 it=3, x=( 0.9181 , 0.8429) , norm= 0.08186 f(x)= 0.003355

5 it=4, x=( 1.0000 , 0.9933) , norm= 0.02683 f(x)= 4.502e-05

6 it=5, x=( 1.0000 , 1.0000) , norm= 1.243e-07 f(x)= 7.736e-15

7 it=6, x=( 1.0000 , 1.0000) , norm= 6.217e-14 f(x)= 2.416e-28

8 Convergence achieved!

We note that at it = 2, we observe a higher value of the function. This step is taken
anyway because there is no globalization strategy implemented to reject such a (seemingly)
bad step. However, it turns out that from that point, the optimizer quickly reaches the domain
of attraction, and from it=4, the norm of the gradient starts to decrease very rapidly, on the
orders of 10−2, 10−7, 10−14. Exponents doubling is consistent with quadratic convergence.
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Figure 6: Vanilla Newton method without globalization strategy
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4.2 BFGS

We will first minimize the function using a gradient-based solver. To do this, we must first set
the optimization options. We will specify a quite strict stopping criteria, namely a tolerance
of 10−8, requiring the norm of the gradient vector to be at least this small. It may not always
be possible to get the gradients to be so small, in particular if there is numerical noise in the
function evaluation and numerical gradients are being used.

1 x0 = np.array ([-1,-4])

2 res = minimize(rosen , x0 , method=’BFGS’, tol=1e-8)

This tells Python to start the optimization at the point x0 = (−1.5,−4) using the specified
options. The output from running this is:

1 fun: 2.005550405057142e-11

2 hess_inv: array( ... )

3 jac: array( ... )

4 message: ’Optimization terminated successfully.’

5 nfev: 156

6 nit: 41

7 njev: 52

8 status: 0

9 success: True

10 x: array ([0.99999552 , 0.99999104])

The first thing we note is that success is set to True, indicating that minimize terminated
due to the gradients being smaller than the tolerance; this indicates that we have indeed
found a stationary point. It took 41 iterations and 156 function evaluations to get to the
stationary point. Python also indicates this to us by saying “Optimization terminated
successfully”. The true global minimum of the Rosenbrock function is (1, 1), so we are very
close indeed.

The output furthermore informs us that the function was called 156 times, the algorithm
took 41 iterations to complete, and that the gradient was evaluated 52 times (njev, with j
denoting Jacobian). The library scipy.optimize uses the word “Jacobian”, which generally
is a matrix of partial derivatives for a vector-valued function. Since we only consider opti-
mization for scalar-valued functions, we will stick with the word “gradient.” This, jac shows
us the gradient vector, which we can see to have the values (5.26 ·10−9,−2.58 ·10−9): we note
that both elements have absolute values below the requested tolerance of 10−8, which is our
convergence criterion.

Figure7 shows the steps taken by the BFGS algorithm in minimizing the function. The
convergence to the global minimum is quite fast and occurs very smoothly.
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Figure 7: BFGS
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4.3 Gradient-free Optimization

If we instead want to minimize the function using Nelder-Mead (fminsearch), the required
code is

1 res = minimize(rosen , x0 , method=’Nelder -Mead’)

2 print(res)

which results in the following output

1 final_simplex: (...)

2 fun: 1.7748487192891172e-10

3 message: ’Optimization terminated successfully.’

4 nfev: 93

5 nit: 49

6 status: 0

7 success: True

8 x: array ([1.00000183 , 1.00001693])

We see that the algorithm managed to get satisfactorily close to the optimum in 49 iter-
ations, which required 93 function evaluations. Figure 8 shows the steps taken towards the
minimum point. We see that the optimizer is taking many more steps but eventually gets to
the true minimum. The path taken by the algorithm looks more like what a ball rolling down
a hill would be doing, which makes sense given the intuitive heuristic of the algorithm.

4.4 Noise in the Function

In this section, we will consider an example where we add noise to the function we are
attempting to optimize. This results in the gradient-based optimizer failing miserably when
it uses numerical gradients and not working very well even when analytic gradients are used.
The gradient-free optimizer is much more robust to this type of noise.

To get a sense of some of the different problems that arise in practice in econometrics, it
is useful to recall that we always assume that our true criterion function is smooth. In Figure
9, this is in all graphs shown as the population function being smooth. Unfortunately, we do
not observe the population function but only a sample criterion function, QN (θ), which may
have noise. Panel a depicts the ideal with no noise, whereas panel b depicts a setting where
there is noise everywhere in the function, which is the worst case. Panel c is a setting where
the function is noisy far away from the minimum, and d is one where noise arises close to
the minimum. Typically, we have some noise far from the optimum where the function may
become highly unstable. But sometimes, noise arises close to the optimum.

In all circumstances, noise will make it almost impossible to compute gradients, leading
the gradient free optimizers to be superior. Of course, it depends on the level of noise, as we
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Figure 8: Nelder-Mead
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Figure 9: Noise in the criterion function
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may be able to choose a larger step size in our numerical gradients which can overcome small
issues of noise. The default settings typically have step sizes on the order of 10−8, which is
good for analytical functions with little numerical noise. Often in econometric applications,
it can be optimal to choose a slightly larger step size as we typically have somewhat more
involved criterion functions, particularly if the dataset is very large.

To see what happens, suppose that we add some noise to the Rosenbrock function in the
form of a random normal variable with a standard deviation of 10−4. That is

f̃(x1, x2) = f(x1, x2) + 10−4η, η ∼ N (0, 1).

In code, we write this as

1 def rosen_noisy(x):

2 sigma = 0.0001

3 f = 100 * (x[1] - x[0]**2)**2 + (1.0 - x[0])**2

4 u = np.random.normal(0,sigma)
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5 return f+u

If we use the default minimize algorithm, BFGS, on this problem, we get the following
failed output results:

1 Iter.: x0 x1 f(x)

2 0: -1.5000 -4.0000 42.19

3 1: -0.8426 2.2941 4.207

4 2: -2.0895 3.0021 6.633

5 3: -2.0895 3.0021 6.633

6 fun: 195.6172635047403

7 hess_inv: array (...)

8 jac: array (...)

9 message: ’Desired error not necessarily achieved due to precision loss.’

10 nfev: 102

11 nit: 3

12 njev: 31

13 status: 2

14 success: False

15 x: array ([ -2.0895456 , 3.00211868])

We see that the optimizer only took 3 iterations but called our criterion function 102 times
in its confusion over the strange behavior of the function it was detecting. Poor, tormented
optimizer. Instead, Nelder-Mead with default settings will happily solve the optimization
problem and find the true parameter values.

What went wrong? The reason is that the numerical gradients will be way off. When the
gradient calculator takes a small step of h =

√
ε ∼= 10−8, it gets a new random shock on the

order of 10−4, which means that it will get a completely wrong indication of the local slope. If
instead we provide analytic gradients (for the noiseless Rosenbrock function), it works again.
Furthermore, we can actually get BFGS to work by making the step size 10−3, which is done
like so:

1 res = minimize(rosen_noisy , x0 , method=’BFGS’, options ={’eps’:1e-3})

If on the other hand, we make the function more noisy with σ = 10−3, Nelder-Mead fails
to converge with the default number of iterations, and will in fact never converge, even with
100,000 iterations at default tolerance requirements, although it does get very close to the
optimum relatively quickly; it just is never able to satisfy convergence.
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Figure 10: Gradient-based Optimizer Failing Due to Stochastic Noise
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5 Troubleshooting

5.1 Common Problems

Based on what we have learned, let us now consider varying degrees of difficulty of a given
optimization problem and the difficulties we may encounter.

Near-quadratic: If the objective function is very nearly quadratic, then obviously, a
Newton-based method will work very well.

Non-quadratic but still convex: If the objective function is still convext but just far
from quadratic, then we will be moving in the wrong direction, but we could be over- or
under-shooting, and the function could have “twists and turns” so that our step direction is
off. For over/undershooting, the globalization strategy (line searching or trust region) will
help us. Typically, this will only ever involve taking a smaller step to be conservative (in fact,
optimizers typically never accept uphill steps, even though you sometimes must take a small
step up to get beyond a local valley).

Non-convex: In this case, Newton-based methods will take us in the wrong direction as
the quadratic gets “turnd upside down.” Figure 11 compares a “Vanilla” Newton method (with
no line search or trust region applied and just accepting uphill steps) in panel a, and panels b
and c show two gradient descent algorithms for a small and large step size respectively. The
function in question is

f(x) = 0.4x2 + exp
(
− 1

1− x2

)
− 1,

and we note that the function has a minimum at x ∼= 0.84, and a local maximum at x ∼= 0.29.
In the region between, the function is concave. We see that the Newton steps move uphill
and settle at the local optimum. The gradient descent algorithm with a small step size, on
the other hand, slowly creeps down to the minimum (panel b). In panel c, however, the larger
step size for the gradient descent causes it to overshoot the minimum and then go even further
back before slowly creeping down away (note that contrary to Newton, it does not go to the
local maximum as it always moves downhill).

5.2 Quick Reference

In this section, we will consider a number of symptoms, some likely causes and ideas for so-
lutions.

Problem Possible solutions
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[anything] Try debugging your code. See if you can simplify your problem
to something where the solution is trivial/easier; too many bugs
are simpler than you might imagine. Shut down parts of the
model you do not need. Work on simulated data if at all
possible. See Section 5.3.

Noise in the
criterion function

Roundoff errors: Look for things in your code that might
become really small or large. For example, if you could be
taking log of something too close to zero or exp of a large
number (e.g., exp(800) = inf). Also functions like normpdf
can cause roundoff error for inputs far from zero.
Simulation/stochastic problems: If you are using simulation
methods (if there is any random draws in your evaluation), make
sure your seed is fixed and does not change every time you
evaluate the criterion function. Try

Unable to find
good starting
values / function
undefined at
initial point

If you cannot think of a good set of starting values, it will
typically mainly be a few of the parameters. In that case, try
doing a grid search. I.e. define a range of points (e.g. 10 points
from 0 to 1000 below) and then loop through the points and
print the function value of your function.

Function
evaluation is very
slow

There are many potential reasons why evaluation might be slow.
Some general advise for speeding up code is given in Section 5.4

Max iterations
reached without
convergence

If possible try to increase maxiter to see if this helps. If the
optimizer is taking many steps without finding improvements,
then it could be the line search that is heavily engaged. It can
either occur due to numerical noise or due to local
non-quadraticness. If the optimizer is unable to find
improvements along the search direction, then your function is
most likely not convex (locally). In that case, switch to
Nelder-Mead or Gradient Descent and let those algorithms take
you out of the region of non-convexity.

Step size too small
(line search fails)

The gradients or the Hessian could be wrong or you could be in
a local area of non-convexity. Try using Nelder-Mead.
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Optimizer moves
into “illegal”
values

For example, it can happen that the optimizer tries to insert
negative values for a variance parameter (which does not make
sense). You can solve this by having your function return
np.inf if illegal values are inserted. Alternatively, for variance
parameters, you can take the absolute value of the parameter.

5.3 Debugging Code

Simplifying: The best advice for debugging is to simplify the code; try to see how simple
you can make the setting and still replicate the bug. Shut off as many parts of the
model as you possibly can and comment out parts of the code. Then, when you get to
a working version, add them back in one at the time.

Narrowing down the cause: Try to be systematic about how you find the cause of your
bug; think of a possible problem that could be causing the symptoms you are seeing
and then think of a way of testing if that is correct.

Data read incorrectly: Try to work on simulated data and create a very simple data
generating process where you can narrow this down. Maybe work only with N = 3
and T = 2 and use keyboard to see what is in the data matrices in the very core
of the function where your criterion function is computed.

Parameters enter incorrectly: If you suspect a bug where, for example, the variance
term enters incorrectly. Then think about intuitively what the effect should be of
increasing the variance term; in most cases, it should mean that the predicted
values of the model should get closer to each other (the variance washes out all the
differences). Then check if this happens.

Plotting over a grid: Often, it might make sense to form a grid over one or more
parameters and calculate the objective value at each of these points and then plot
it. This can sometimes tell a lot about what can be wrong.

Randomness: If you think there is randomness in your function (e.g. due to random
draws used to compute the function), evaluate the function twice at the same point
to see if it returns precisely the same value.

Numerical noise: If you think there is numerical noise in your function, try doing
a forward and a backwards finite difference (derivative-approximation). If the
function is well-behaved, the two should give approximately the same slope.

5.4 Speeding up Python Code

The best practice for code development is
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Figure 11: Non-convexities

(a) Newton Moves the Wrong Way
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(b) Gradient Descent, small step size γ = 0.1
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(c) Gradient Descent, Large step size γ = 1
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Note: The plotted function is f(x) = 0.4x2 + exp
(
− 1

1−x2

)
− 1, which is not globally convex

(although it is convex in a neighborhood around the global minimum, x ∼= 0.84.
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1. Get the code to work,

2. Make the code fast [if needed].

In step 1, speed does not matter, so develop the code however it is simplest to ensure correct-
ness. Next, you can make the code faster while verifying that you get identical results. A few
tips:

Use vectors, don’t loop: Loops are easy to understand but slow. So use vectorized oper-
ations in numpy.

Preallocate: If you are filling out an array iteratively (e.g. in a loop), at least make sure
that you have preallocated the output. Otherwise, Python will be iteratively destroying
the previous array and allocating a new array with a larger size.

Profiling code: There are various ways of “profiling” your code, which is when you ask
Python to find out which specific function calls are taking up too much time. It is
crucial to know in advance that you are not optimizing on a part of the code that is not
in fact the true bottleneck. Google is your friend.

numba: A wonderful technology for speeding up code can be to write the code using loops
and then utilize the @njit decorator from the numba package to speed the code up.
Essentially, this is like asking Python to read your code and write super fast low-level
code that achieves it. Google is your friend.
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