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Abstract

We formulate and estimate a model of car portfolio choice and driving,
which allows two cars to be substitutes or complements, both in ownership
and driving. We estimate the model using Norwegian register data, which
features rich policy variation. We find significant portfolio synergies between
an EV and a combustion vehicle (CV), and for 16% of households the syn-
ergies are so strong that the two become strict Hicksian complements. This
implies that EVs tend to come as additions to existing CVs rather than as
replacements. Failure to account for portfolio synergies leads to an overly
optimistic assessment of EV adoption incentives.
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1 Introduction

Transportation is one of the key sectors in reaching the climate goals set by most
developed countries today. Towards this end, many countries have enacted EV
adoption policies of some form or another, with the EU effectively banning sales of
internal combustion engine vehicles (CVs) by 2035. The motivation behind this is
the desire to shift driving towards the lower pollution of EVs. However, the success
of such a policy rests on the assumption that an EV is a substitute for a CV. This
paper argues that there is considerable portfolio synergy between an EV and a CV.
This means that to a certain extent, EVs do not replace existing CVs but instead
come as additions.

If car types are not simply substitutes, environmental policy needs to take it into
account. This counts doubly so if environmental policies do not directly target their
key objective – reducing emissions – but instead rely on an intermediate step, such
as stimulating EV adoption. We show that failing to account for portfolio synergy
leads to an overly optimistic estimate of the abatement cost of EV adoption policies.

To account for this synergy, we develop and estimate a discrete-continuous model
of car choice where portfolio complementarities can arise explicitly from driving.
We find that bundle synergies are particularly strong between an EV and a CV.
This means that households respond to EV incentives by adding an EV to their
car portfolio, rather than replacing their CV. Crucially, we do not find evidence
that the driving in the newly added EV significantly reduces driving in the existing
CV, resulting in a near doubling of the total driving of the household. Thus, EV
incentives fail to reduce fuel consumption but instead increase total driving and
through that other externalities like congestion, accidents, and local pollution.

We find evidence of different forms of car portfolio synergies. One form that
is common to all car types is driving specialization. Two-car households prefer
to assign more driving to the car that is younger and has a more powerful engine.
Intuitively, diversification of their car portfolio gives households access to specialized
cars for different trips: a large car for family trips and a smaller car for single-person
shopping.

However, this effect is not sufficient to explain the synergy between an EV and
a CV, which is stronger than what can be accounted for by driving. Intuitively,
one source of the complementarity may be the widely cited phenomenon of “range
anxiety”: that households are overly focused on infrequent but very long trips,
exceeding the EV’s maximum range. For such households, also having access to a
traditional vehicle for those trips would, perhaps, alleviate the range concern. Even
so, the net environmental effect is still ambiguous as it depends on driving by one- vs.
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two-car households. If total driving does not increase much (i.e. strong satiation in
driving demand) and most driving is shifted strongly towards the EV, then a policy
that pushes a household with a single CV to choose an (EV, CV)-portfolio can still
result in lower emissions.

Our model allows total driving by two car households to depend freely on the
number of cars. Empirically, we estimate an economically small degree of satiation.
So while we estimate strong preferences for shifting, it tends to shift driving towards
the youngest and heaviest car and to a lesser extent towards the car that is cheapest
to drive. The result is a negative bottomline environmental effect of pushing con-
sumers from CV to (EV, CV)-portfolios. The validity of our driving model is both
consistent with raw descriptives as well as external survey evidence for Norway.1

We are the first to point out the interplay between EVs and CVs in two-car
portfolios for both the extensive (ownership) and intensive (usage) margins. Fur-
thermore, the discussion above highlights why it is crucial to model both margins
simultaneously to assess the cost effectiveness of EV adoption incentives.

To complement our structural model, we also present evidence based on raw
descriptives and using different notions of complementarity. First off, Figure 1 shows
new CV and EV sales by whether the household has one or two cars. Clearly, EVs are
vastly overrepresented in two-car portfolios. Next, we consider the complementarity
criteria proposed by Manzini et al. (2019), which do not rely on price-variation
and are model-free. We evaluate these criteria for different partitions of Norwegian
households and confirm that complementarity does not hold for all households but
for some subsamples. We show that comparing choice frequencies among one- and
two-car portfolios, the strongest overrepresentation in the data occurs for the same
portfolio identified as having the strongest portfolio synergy by our model: a small
EV and a large CV.

In our structural model, households make a discrete car portfolio choice and a
continuous driving choice for each car they own. Households can choose between 20
car types, which allows for 231 different combinations of car portfolios. The model
extends the discrete bundle complementarity model of Gentzkow (2007) with a con-
tinuous driving choice in the spirit of Dubin and McFadden (1984). Our method-
ological contribution lies in tying the bundle synergy parameters to driving in the
two cars in a way that allows flexible preferences for driving by two-car households.
This way, portfolio synergies are allowed to explicitly depend on driving.

To estimate the model, we use detailed register data for the full Norwegian
1Kverndokk et al. (2020) report that 89% of households that own a CV and buy an EV report

that they drive their CV no less than before.
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Figure 1: Car Ownership Over Time
A: Households without electric vehicles B: Households with electric vehicles
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Note: The right panel shows that in 2017, close to 4.5 percent of all households owned
an electric vehicle – about 75 percent of these were two-car households. The same year, a
bit more than 60 percent of the households were car-owning households without an EV in
their portfolio – about 40 percent of these were two-car households. The figure excludes
households that do not own a car (around 30 percent).

population covering 2005-2017. We observe household demographics, including data
on each spouse’s home and work locations, as well as car ownership status for all
Norwegians, and the driving at vehicle safety checks when the vehicle is aged 4, 6,
8, etc. Norway is of special interest for EV adoption policy questions since it has
achieved the highest penetration in the world.

Identification of the model relies on a combination of parametric assumptions
and exogenous variation in three key monetary variables:2 fuel prices, road tolls,
and registration taxes. First, fuel prices in Norway are largely determined by world
oil market prices, which are unrelated to local Norwegian policy initiatives.3

Second, road tolls in Norway are substantial and EVs are exempt. We show that
toll exposure is an extremely powerful predictor of EV adoption, nearly doubling the
purchase probability. This is the same difference in ownership propensity as that
between the richest and poorest decile of households. There is rich variation in toll
exposure both cross-sectionally but also over time as more cities have enacted tolls
to combat congestion and local pollution. We embed this directly into our model.

Third, registration taxes make up 25-50% of the purchase price and there were
several major reforms of the formula during our period. The tax is attribute-based
and went from targeting weight to emissions. We show that while car attributes

2We assume that households are rationally forward-looking and internalizing future fuel cost
savings. Recent research has found evidence in support of this (e.g. Busse et al. 2013; Grigolon et
al. 2018).

3Of course, a general trend towards EVs has been present in most countries, but the timing and
nature of those policies are highly heterogenous.
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account for 96% of the variation in the pre-tax car price, they only account for 70%
of the variation in the tax component. Thus, the majority of our new car price
(MSRP) variation was induced by policy reforms.4

Our estimated model is able to fit key moments of the data and produces elastic-
ities that are consistent with the literature. One key take-away is that the small EV
and a large new diesel car are Hicksian complements to 16% of households. How-
ever, complements only arise for subsets of the population and all cars are strict
substitutes in aggregate. Nevertheless, there are still strong synergies between an
EV and a CV and we will demonstrate that this synergy is crucial for our key policy
results.

Our main analysis is a counterfactual assessment of the cost of CO2-reductions
from three policies: a higher fuel tax, a lower EV tax, or a higher CV tax. We find
that fuel taxes are more cost-effective than registration taxes, at just 897 NOK per
tonne of CO2. For the CV tax, the cost per tonne is 20 times higher. This is not
surprising as the fuel tax targets the environmental externality directly and allows
consumers to respond on both the extensive and intensive margins.

For purchase taxes, we find that lower taxes on EVs costs twice as much per tonne
as raising taxes on CVs. This cost contains consumer welfare, tax revenue and other
driving externalities but ignores the distributional concerns. EVs in Norway are
exempt from VAT and we find that such a policy is strongly regressive, whereas the
fuel tax is progressive.

Finally, we demonstrate that portfolio synergies explain why the EV adoption
incentives are so much more costly than CV taxes. To show this, we estimate a
model without portfolio effects and show that when the data is interpreted through
such a lens, the two policies have equal cost per tonne of CO2. The intuition is that
without range anxiety, a single EV is a good substitute for a single CV. That way,
the EV adoption policy succeeds in moving driving from CVs to EVs. In our full
model, however, the primary effect is that households go from a single CV to the
mixed (EV, CV)-bundle, resulting in a dramatic increase in driving.

1.1 Existing Literature and Our Contributions

Our contributions are both methodological and substantive. Methodologically, we
extend the discrete-continuous choice models with bundle choices. Discrete-continuous
models date back to Dubin and McFadden (1984) and have been used successfully

4We emphasize that a major reason for this is the coarse aggregation of cars into just 20 types.
Thus, cars of competing firms have been bunched together, so the price variation across firms and
idiosyncratic car quality within a segment of attribute space gets averaged out. This identification
strategy could not be used if one is interested in cars at the firm level e.g. to study market power.
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to analyze the car market specifically, although for one-car models only.5 Discrete
choice models with bundles have been used going back to Manski and Sherman
(1980), but the framework proposed by Gentzkow (2007) has proven powerful for
analyzing the notion of complementarity, sparking a growing literature.6 Our con-
tribution is to provide a parametric model for how the bundle parameter depends on
driving in a flexible way that also permits an tractable solution to the two-car driv-
ing problem. Perhaps the closest model methodologically is Thomassen et al. (2017)
where the discrete choice is supermarket location and the consumption quantities
are continuous.7

Another seemingly innocuous methodological departure from previous work on
complementarity in discrete choice is that we allow consumers to buy two of the
same car, something that frequently happens in our empirical setting. We refer to
this as a specialized bundle, and it has been assumed away in all prior work where
discrete demand has been taken as binary (buy or don’t). We prove formally that
incorrectly assuming binary demand will result in a bias towards finding Hicksian
complements. And in fact, when our data is viewed through the binary lens, EVs
and CVs appear to be strict complements at the market level.

We are not the first to consider portfolio effects with regard to cars purchases
(Wakamori, 2015; Archsmith et al., 2020) or driving (De Borger et al., 2016). How-
ever, we are the first to do so jointly and the first to point out the synergy between
an EV and a CV as different from those between two CVs. Furthermore, we use
recent model-free criteria for establishing bundle complementarities by Manzini et
al. (2019) which rely solely on portfolio market shares. It is well-known that econo-
metric analysis of portfolio choice is complicated if one only observes market share
data (Iaria and Wang, 2021) so we also evaluate criteria on subsamples of house-
holds. This illuminates the role of heterogeneity in shaping the portfolio synergies
we document.

Substantively, we contribute to a large literature on environmental car policy
evaluation.8 Our key contribution is that we highlight a novel feature of the demand
for EVs: a demand synergy between an EV and a CV. Our estimates are consistent
with the popular notion of “range anxiety.”

This makes us related to recent empirical work on EV adoption. One strand em-
phasizes the dynamics of the charging network and how charging subsidies interact

5West (2004); Bento et al. (2009); Grigolon et al. (2018); Munk-Nielsen (2014).
6Empirically, see e.g. Grzybowski and Verboven (2016); Thomassen et al. (2017); Ershov et al.

(2021).
7In their setting, complementarity is between the continuous choices, e.g. soda and chips.
8E.g. Chandra et al. (2010); DeShazo et al. (2017); Jenn et al. (2018); Muehlegger and Rapson

(2018); Yan (2018); Clinton and Steinberg (2019).
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with more direct EV policies (Springel, 2021; Li, 2019).9 A second strand of EV
literature focuses the difference between the average and marginal CO2 emissions of
electricity production (see e.g. Archsmith et al., 2015a; Holland et al., 2016).10 A
third strand has sought to identify what an EV “replaces”. Xing et al. (2021); Jo-
hansen (2020) show that EV purchases tend to divert households away from hybrids
and CVs that on average are more environmentally friendly.

In terms of our policy conclusions, we find fuel taxes to be superior to car taxes
working through the acquisition. This is consistent with prior work comparing
it to attribute-based taxes (Grigolon et al., 2018) or CAFE standards (Jacobsen,
2013).11 This fact is not surprising, given that fuel taxes is the only true Pigouvian
policy instrument; i.e., directly proportional to the environmental externality (Ito
and Sallee, 2018).

2 Data and Institutional Setting

2.1 Car Policies and Reforms

This section presents the institutional setting regarding car taxation and policies in
Norway. We will emphasize the cross-sectional and time-series variation generated
by the policies and how they have been updated and reformed during our sample
period. Apart from providing an understanding of the institutional setting, this
variation is crucial for sources of exogenous variation in prices.

Norway taxes car ownership and driving heavily – around 60 billion kroner (al-
most 2% of GDP) are paid in car related taxes each year (Fridstrøm, 2019). Taxes
fall into four categories: Purchase taxes, fuel taxes, annual ownership taxes, and
tolls. In 2017, these four taxes summed up 15, 20, 10, and 10 billion NOK in rev-
enue respectively, so none are negligible. EVs are exempt from purchase taxes and
tolls and pay much lower annual taxes. In the following, we will briefly describe
each of these policies in that order, and lastly cover EV-specific policies.

The purchase tax is paid for new car sales but not for resale of used cars. It
consists of a flat 25% VAT and a registration tax component that depends on car

9In Norway, 95% of EV owners report to charge at home (Figenbaum and Kolbenstvedt, 2016).
So while access to a charging network matters, it is not necessarily first-order important for EV
adoption.

10In Norway, 95% of electricity is produced by hydro power so it is less relevant for our specific
empirical setting.

11A wider literature has studied fuel economy standards imposed directly on car manufacturers,
including Durrmeyer and Samano (2018); Reynaert (2021) and earlier work reviewed in Anderson
and Sallee (2016).
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attributes. The registration tax varies between 0% and 100% of the producer price.12

There is substantial time-series variation in the formula, which has shifted gradually
from a focus on engine power to CO2 emissions so that by 2017, the most efficient
gasoline and diesel cars pay virtually zero registration fee. EVs are exempt from
both VAT and registration taxes and have been throughout our sample period.
Additional details are in Appendix A.4.1.

Fuel taxes on diesel and gasoline are comprised of a fixed and proportional term.
Electricity is taxed in a similar fashion and there are no special provisions for EV
use compared to any other private use. There have been no notable policy changes
so all time-series variation comes from input prices, which are largely due to world
market conditions in oil and electricity. Details are in Appendix A.4.2.

The annual tax is paid by all car owners, regardless of whether the car is new or
used. The tax primarily differs between EV and non-EV, averaging 455 and 3,000
NOK respectively in 2017. Within these fuel segments and across time, there is
virtually no variation in the annual tax except for minor updates that follow the
CPI.

Toll payments constitute a growing share of car related tax payments, having in-
creased from 3 billion NOK in 2005 to 10 billion in 2017. This increase is largely due
to a gradual increase in the use of toll rings (“cordons”) around major urban areas.
A second type of toll payments is for bridges or tunnels, which are non-negligible in
Norway due to the geography. In total, the share of households encountering a toll
on their way to work went from 15% to 37% over our sample period. Apart from
increased prevalence of toll rings, the rates per trip have also gone up. A key feature
of the toll policy is the EV exemption. Figure B.5 shows maps of toll exposure and
EV adoption. Apart from the time-series variation, toll exposure has considerable
cross-sectional variation depending on home and work location, which we observe
from linked employer-employee data.

The final set of car policies specifically targeting EV adoption. These include
reduced ferry rates, access to restricted bus lanes, subsidies to charging stations
(starting in 2009), and access to free and restricted parking spots. Fridstrøm (2019)
argues that apart from the purchase and toll tax exemptions, the access to bus lanes
has been highly impactful. We will proxy for bus lane and parking access with a
dummy for working in the city in our model. However, we do not include charging
station network in our empirical model.13

12During the period 2005-2017, the following attributes have affected the registration tax: weight,
cylinder volume, engine effect, type approved CO2 emissions and type approved NOx emissions.

13While charging network is of course important for adoption, the causality might run even
more strongly in the other direction, with entry of charging stations responding to local demand,
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2.2 Data Sources and Constructed Variables

Our dataset consists of register data on all households in Norway over the years 2005-
2017. We have four primary data sources, relating to demographics, car ownership,
driving, and prices. We will describe each source in turn before turning to three
constructed variables: work distance, tolls, and aggregated car types.

First, the annual demographic registers include information such as age, family
composition, income, residential and work location. Second, car ownership spells
are recorded in the central motor vehicle register, with a start and end date as well
as a person identifier.14 The central motor vehicle register also contains technical
information about the cars, such as make, model, fuel type, engine effect, etc. Third,
driving data comes from mandatory safety inspections, occurring when the car is
four years and biannually thereafter. At this inspection, the odometer is recorded
from which we can compute the average daily driving in km. There is no requirement
for a safety test when a car changes owners, so the ownership and driving periods
are asynchronous.

Finally, we utilize several auxiliary datasets, including monthly data on fuel
prices/taxes and quarterly data on electricity prices/taxes from Statistics Norway;
annual merchant suggested retail prices (MSRPs) of new cars; annual rates of car-
related taxes from the Norwegian tax authorities; expected maintenance costs by
car age based on data from US mechanics; and local external costs of driving from
the Norwegian Institute of Transport Economics. For used-car prices, we employ
data from the Norwegian tax authorities which is used to compute registration taxes
on imported used cars. See Appendix A for more information.

We now turn to the construction of two key variables: the work distance and toll
payments associated with the commute. We observe the residential and work loca-
tions of households at the level of “basic statistical units”, henceforth neighborhoods.
There are about 14,000 neighborhoods in Norway, with an average population of less
than 200 households. We calculate the shortest paths (in travel time) between all
centroids using the Norwegian road network.15 We set the commute distance to zero
for unemployed and we drop approximately 10% of households where the location
of the firm is missing (details for these are in Appendix A.1.3) Work distance is
averaged between spouses in couples, and it is strictly positive for about 60% of

possibly ahead of time if firms are forward-looking. Springel (2021) pursued a such a joint model,
but in a one-car setting.

14The data does not include leased cars, which are listed as owned by a company and therefore
cannot be tracked to the users. In practice, this means that we are misclassifying some households
as having fewer cars at their disposal than they actually do. Note that EVs are under-represented
among company owned cars – see Appendix Figure B.1 for more information.

15The road network is from 2015. We do not have time-series variation in the road network.
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households. The second constructed variable is toll exposure. Using the shortest
path from the home to work neighborhood centroids, we add up the tolls for each
gate along the route. This is done separately for each year, so toll rates and exposure
vary both cross-sectionally and over time.

Finally, we will describe the discretization of cars into a smaller set of types that
will form the choiceset in our structural model. Since the model is computation-
ally demanding, we partition car models into 20 types based on the values of car
characteristics: we partition by propulsion system (diesel/gasoline/electric), weight
(small/large)16 and four car age categories.17 For each car type in each year, we
compute the population-weighted average characteristics of all cars falling in that
category. Thus, characteristics will change from year to year. Not all EV types are
available in all years. The first small EV became available in 2011, and the large
EV in 2013 when Tesla Model S arrived. Furthermore, since there are no policies
targeting hybrids specifically, we simply include those in their corresponding gaso-
line or diesel segment.18 Additional details about variables and the discretization
into types as well as characteristics for the 2017 choiceset are presented in Appendix
A.2.

2.3 Final Estimation Samples

Our model will make predictions on two margins, so we will construct two datasets:
one for car ownership, and one for driving driving.

In the car ownership dataset the unit of observation is a household-year. In each
year, we take the stock of cars owned by the household ultimo as the household’s
ownership decision. Since our model can handle 0, 1, or 2 cars, we drop cars beyond
the first two, keeping only the youngest cars. We also omit cars older than 25
years, and cars registered for other purposes than personal use such as taxis. In
terms of households, we drop observations with missing values, which happens most
frequently for work distance (10%). Our final sample contains 89% of the raw
households (approximately 2 million annually). See Appendix A.1.1 for more details.
A summary of car ownership and demographic variables for 2017 can be seen in

16For CVs, this segmentation is based on the average vehicle weight within each age and fuel cat-
egory each year. EVs available in Norway during our sample period naturally fall in two categories,
where the “large” category consists of Tesla Models S and X.

17For a CV, the age groups are [0; 1), [1; 4), [5; 11), [12;∞) years, while for an EV we just have
new and used, [0; 1) and [1;∞), since there is no EV in our sample prior to 2011.

18The share of hybrid vehicles is increasing over time (see Appendix Figure B.1), and in 2017,
the car type “large, new gasoline” consists mainly of hybrids (see Table A.2, third row). Hybrid
vehicles have higher weight and ownership cost, relatively high engine efficiency, but lower driving
cost and emissions per kilometer. This shift makes a lot of sense due to the favorable tax treatment
relative to more polluting traditional cars.
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Table 1.
In the driving dataset, the unit of observation is a household in given period.

Since our model will predict a different level of driving for a one- and a two-car
household, we partition driving periods each time one of the following occurs: the
car changes owner, the owning household changes its portfolio (e.g. buying a second
car), or the driving period ends. For each sub-period, we compute the weighted
average of the household yearly demographics using as weights the fraction of the
driving period that covers a given year. Similarly, we compute the fuel price as a
weighted average of the monthly (country-wide) averages over the driving period.
Our model for driving is not computationally constrained and we are not forced
to discretize car types so for the driving data, we use the actual micro-level car
attributes to preserve as much variation in the data as possible.

To construct our final driving period sample, we first drop periods beginning
before 1 Jan 2005 or where the car has missing attributes (mostly for very old cars).
This admits 15.9m driving sub-periods. From these, we drop periods violating one
of the following criteria: driving is between 0 and 200 km/day, safety inspections
are not unnaturally early or late, no more than 70% of the total driving period is
dropped for other reasons (e.g. owner unobserved for part of the period). This
leaves us with 13.4m periods in the final sample. See Appendix A.3 for details.

2.4 Descriptives

We now present descriptive evidence on car ownership and driving in Norway. To
begin with, Figure 1 shows the overall change in new car sales. EV sales began in
2011 with the “small EV, new” (the modal car being a Nissan Leaf), followed in
2013 by the first large EV (the Tesla Model S). By 2017, EV sales made up 30% of
all new car sales, and 4.5% of Norwegian households owned at least one EV.

Figure 1 also highlights that households with EVs are more likely to have two
than one car. Thus, it is relevant to ask whether our demographics are strong
predictors of the number of cars owned by a household. It turns out that income
and work distance are extremely powerful predictors. Broadly, the effects of the two
are similar: higher income or work distance is associated with higher car ownership
and driving. For instance, comparing the poorest to the richest decile of households,
the share without a car goes from over 80% to under 20%, and average driving in
one-car households from 25 to 40 km/day (Figures B.2 and B.3). Our structural
model will be able to fit these stark differences across household segments (Figure
3).

In terms of fuel types, higher income or work distance is associated with a shift
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Table 1: Summary Statistics, Ownership Dataset, 2005 and 2017

2005 2017
Portfolio type Mean Std dev Mean Std dev
Share no-car households 0.304 0.460 0.304 0.460
Share (CV) households 0.446 0.497 0.403 0.491
Share (CV,CV) households 0.250 0.433 0.248 0.432
Share (EV) households 0 - 0.011 0.104
Share (EV,EV) households 0 - 0.002 0.045
Share (EV,CV) households 0 - 0.032 0.176
Demographics Mean Std dev Mean Std dev
Household disposable income (100,000 NOK) 4.822 6.312 5.106 6.862
Age (household average) 51.786 18.190 52.423 18.551
Couple (dummy) 0.556 0.497 0.546 0.498
City (dummy for living in a major city) 0.250 0.433 0.245 0.430
Work distance (km, household average) 8.492 16.520 8.336 16.340
Work distance (excluding zeros) 15.134 19.643 15.601 19.657
Toll (NOK, one-way, sum of household members) 2.085 9.038 8.441 21.780
Toll (excluding zeros) 24.713 20.278 42.629 30.631
Observations (households) 1,849,058 2,169,769

Notes: Summary statistics are for the “Ownership Dataset,” where the unit of observation
is a household-year. Only the 2005 and 2017 cross-sections are shown in this table. All
monetary variables are measured in 2015 NOK. Disposable income is the sum of labor
and capital income minus taxes plus transfers. Disposable income and tolls are summed
over spouses, while age and work distance are averaged across spouses.

from gasoline towards diesel and EV. In terms of driving, diesel cars are driven ap-
proximately 10 km/day more than gasoline cars, even conditional on income or work
distance decile. Unconditionally, the distribution of EV driving looks indistinguish-
able from gasoline car driving (Figure B.4), but conditionally they are somewhere
in between (Figure B.3).

By far the strongest predictor of EV adoption, however, is toll exposure. Figure 2
shows for each decile of work distance the fraction of households that own (at least)
one EV; panel A for one-car households and panel B for two-car households. Firstly,
we see that EV ownership is more than three times as high for two-car households.
But more importantly, toll exposure more than doubles the share that owns an
EV. Furthermore, while EV adoption is virtually independent of work distance for
households with no toll, those with toll exposure have nearly twice as high EV shares
at higher work distances compared to lower.

Of course, income and work distance are correlated. Thus, we have estimated
a set of linear regressions aiming to control for these and other variables simulta-
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Table 2: Summary Statistics, Driving Dataset, all years
Diesel Gasoline Electric

Car data Mean Std dev Mean Std dev Mean Std dev
Driving ( km/day) 41.532 19.325 31.303 17.801 37.115 16.801
Length of driving period (years) 2.271 0.669 2.128 0.478 3.395 0.750
Length of sub-period (years) 1.653 0.816 1.658 0.700 2.281 1.119
Car age (years) 6.862 3.252 9.296 3.826 2.436 1.313
Car weight (tonnes) 1.531 0.245 1.215 0.190 0.995 0.190
Engine effect (100 kW) 0.903 0.225 0.803 0.227 0.833 0.530
Demographics Mean Std dev Mean Std dev Mean Std dev
Household owns second car (dummy) 0.629 0.483 0.522 0.500 0.811 0.391
Household disposable income (100,000 NOK) 7.116 9.270 6.103 8.845 9.779 13.339
Age (household average) 49.789 13.418 52.455 15.315 45.399 10.569
Couple (dummy) 0.820 0.370 0.721 0.435 0.893 0.291
City (dummy for living in a major city) 0.155 0.359 0.210 0.405 0.302 0.454
Work distance (km, household average) 14.659 20.858 11.512 18.554 18.353 18.604
Work distance (excluding zeros) 18.403 21.858 16.078 20.183 19.727 18.572
Toll (NOK, one-way, sum of household members) 9.843 22.161 7.765 18.572 30.758 36.656
Toll (excluding zeros) 33.433 29.652 28.789 25.953 44.319 36.538
Driving periods 2,553,075 3,522,844 12,308
Driving sub-periods 6,057,246 7,345,844 33,844
Mid-year of driving period (average) 2013 2011 2015

Notes: Summary statistics are for the “Driving Dataset,” where the unit of observation
is a sub-period, defined as a subset of the driving period where the car’s owner and its
car portfolio is unchanged. All years are pooled, and monetary variables are measured in
2015 NOK. Disposable income is the sum of labor and capital income minus taxes plus
transfers. Disposable income and tolls are summed over spouses, while age and work
distance are averaged across spouses.

neously (Table B.4). These reveal that urban residency and toll exposure tend to
move households away from diesel cars and towards EVs. Thus, the prototypical
diesel owner is rich and lives outside the city but commutes quite far, whereas the
prototypical EV owner is also rich but more likely to live in the city and most likely
has a toll along the commute to work.

Naturally, one may be concerned about endogeneity of toll exposure due to
residential sorting. To explore this, we estimate a linear probability model where
the outcome is a dummy for owning an EV, the key explanatory variable is the toll (in
NOK/trip). We estimate a pooled regression in addition to one that includes fixed
effects for neighborhoods, where identifying variation only comes from comparisons
of neighbors that have different work locations. The results are in Table B.5. The
estimated effect of toll exposure is 0.12%-points without neighborhood fixed effects,
and 0.10%-points with effects. While statistically significantly different, the two
effects are economically very close. This is particularly striking given the primary
variation in tolls is across cities with and without tolls and over time. We take this
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Figure 2: EV ownership by toll exposure, cars owned and work distance deciles,
2017

A: One-car households B: Two-car households
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Notes: 2017 households with positive work distances are divided in work distance deciles.
The share of households owning an EV is then calculated separately for one-car and two-
car households depending on whether at least one household member is required to pass
a toll gate on her way to/from work.

as evidence that residential sorting is adequately controlled for by our rich set of
demographic controls.

2.5 Portfolio Aspects

We now turn to descriptive evidence focusing explicitly on two-car aspects. We start
with driving before turning to ownership.

The distribution of driving by cars in one- and two-car portfolios looks remark-
ably similar (Figure B.4), except that those in two-car portfolios are driven more.
This holds even after controlling for demographics and car characteristics in a linear
regression. 19

We find more important effects pertaining to portfolio shifting: that is, a given
car is driven differently depending on what other car the household has access to. To
show this, we have run a regression of driving on demographics and car characteris-
tics, where we crucially have included the difference in characteristics between the
car in question and the second car in the portfolio. The estimated coefficients reveal
that households tend to shift driving towards the car that is youngest, heaviest, and
has the most horsepower. This precise mechanism will be built into our structural
model in Chapter 4.

We now turn to the ownership margin. We have along the way seen some hints
19See Appendix Table B.3, which regresses driving in km/day on household and car character-

istics. The 0.2 is the coefficient on a dummy for whether the household owns two cars.
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that the type choices of two-car households may be different than those of one-car
households, and we will now provide more direct descriptives. First, we have already
seen in Figure 1 that EVs tend to belong to two-car portfolios. More precisely, if we
select an EV at random from the 2017 dataset, then the probability that it belongs
to a two-car portfolio is 75.6%.

Next, if we partition the cars into just two types, EV or CV, then we can ex-
amine the market shares for all six possible portfolios, which we denote (s0, sEV,

sCV, sEV,EV, sCV,CV, sEV,CV). Table 1 presents these for 2017. We see that out of all
households, the (EV, CV) bundle is owned by 3.19% of households, while the single-
ton EV portfolio is only owned by 1.10%. The symmetric bundle, (EV, EV), is very
marginal at only 0.20%, and we will not pay much attention to it throughout the
rest of the paper. Conversely, the symmetric (CV, CV) bundle is the most popular
two-car option, at 24.8%. The full table of all portfolio market shares in Appendix
Table B.1. This reveals that the most popular (EV, CV) combination is the Small
used EV and the Large diesel 5–11 years, owned by 0.53% of households.

3 Complementarity

The key insight in this paper is that there are strong portfolio synergies between
an EV and a CV, so strong that the two are strict Hicksian complements for some
households. This section will provide simple descriptive evidence to back this up
without relying on our full structural model. To do this, we present three types of
evidence of increasing complexity, all based on portfolio market shares alone.

Let us start by defining some notation. We let d ∈ D denote a discrete portfolio
choice, and j, k ∈ J denote individual cars. Then d = 0 is no car, d = j is a
one-car portfolio, wheres d = (j, k) denotes a bundle of two cars. We will let sd
denote observed market shares for d ∈ D, and let s denote a full vector of market
shares. To simplify the exposition in this section, we will aggregate cars into just
two, J = {EV,CV}, and we will be showing market shares for the full population
as well as within various subsamples of households in Table 3.

Our first piece of evidence asks whether an EV is chosen more by two-car house-
holds than (similar) one-car households:

C.1 The Dependence Criterion: sEV,CV
sEV,CV+sEV,EV+sCV,CV

> 2 sEV
sCV+sEV

sCV
sCV+sEV

This criterion is particularly relevant given that many previous structural one-car
models of the car market implicitly make the assumption that the choices of two-car
households are independent. Table 3 shows that this criterion is satisfied for every
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single subset of the population. That means that the mixed bundle is chosen more
often by 2-car households than what two randomly selected 1-car households would
do. Of course, as Gentzkow (2007) discussed, part of this reason may be due to
correlated preferences, but we note that the criterion is satisfied even within the
richest decile of households or among the households exposed to road tolls.

Table 3: Market Shares and Complementarity Criteria

Market shares Compl. Criteria

N s0 sEV sCV sEV,EV sCV,CV sEV,CV C.1 C.2 C.3 Γ̂EV,CV

Income decile 1 216980 83.25 0.22 14.38 0.01 2.05 0.09 X X X 0.87
Income decile 5 216977 24.28 1.15 57.33 0.04 16.46 0.73 - X - -1.31
Income decile 10 216976 7.06 2.64 32.34 1.04 44.35 12.57 - X - 0.04
Urban = 0 1638780 25.51 0.83 41.45 0.18 28.93 3.10 X X - 0.83
Urban = 1 530989 45.47 1.94 36.84 0.27 12.02 3.46 X X - 0.79
Toll = 0 1740109 33.84 0.67 40.25 0.10 23.38 1.77 X X - 0.79
Toll = 1 429660 16.44 2.84 40.61 0.64 30.52 8.94 - X - 0.24
Wd = 0 1010380 46.81 0.43 39.43 0.04 12.64 0.65 X X - 0.58
Wd = 1 1159389 16.09 1.69 41.09 0.35 35.38 5.41 - X - 0.23
Couple = 0 984615 53.66 0.76 39.92 0.02 5.33 0.32 - X - -0.56
Couple = 1 1185154 11.07 1.39 40.65 0.36 40.96 5.57 - X - 0.09
Full sample 2169769 30.40 1.10 40.32 0.20 24.79 3.19 X X - 0.78

Notes: A “X” indicates that the corresponding complementarity criterion is satisfied
for the corresponding market share vector. The coefficient, Γ̂EV,CV, is one of the five
estimates, (ÛEV, ÛCV, Γ̂EV,EV, Γ̂CV,CV, Γ̂EV,CV), for the model (1), exactly identified by
a single market share vector.

The second piece of evidence is based on the Correlation Criterion of Manzini et
al. (2019). This asks whether the following conditional probability is greater than
the unconditional: Pr(EV|CV) > Pr(EV).

C.2 The Correlation Criterion: sEV,CV
sEV,CV+sCV+sCV,CV

> sEV,CV + sEV + sEV,EV

Table 3 shows that this criterion is satisfied for the full sample and nearly half of the
subsamples of households. Clearly, C.2 is much stricter than C.1. This is because
conditional on owning a CV, a randomly selected household is most likely to own
just a single CV, followed by two CVs, both of which are in the denominator.

Our third criterion is the Hicksian criterion. This gives the cleanest criterion for
complements, but it necessitates a model. Following Gentzkow (2007), we set up
the following random utility model (RUM), which will later be the backbone for our
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full structural model.

Vi0 = U0 + εi0

Vij = Uj + εij (1)

Vijk = Uj + Uk + Γjk + εij,

where (εid)d∈D are IID Extreme Value Type 1. Our full structural model, presented
in the next section, will simply be an extension where all coefficients are heteroge-
neous and depend on optimally chosen driving. In this model, the expected quantity
of each good is

Qj ≡ Pr(j) +∑
k∈J Pr(j, k) + Pr(j, j). (2)

Thus, the third criterion is simply

C.3 Hicksian Criterion: ∂
∂UCV

QEV > 0.

With the location normalization that U0 = 0, the remaining parameters, (U0, UEV,
UCV, ΓEV,EV, ΓCV,CV, ΓEV,CV), are exactly identified from a single vector of market
shares, s = (sd)d∈D, and can be computed in closed form as Ûd := log sd − log s0 for
d 6= 0, and Γ̂jk = Ûjk − Ûj − Ûk.

We see from Table 3 that C.3 is the strictest criterion, being only satisfied by a
single subsample, namely the poorest decile of households. It is not surprising that
this criterion is the strictest: in Appendix C.1, we prove that C.2 always implies
C.3, but that the reverse only holds when demand is binary (buy or don’t), which
happens when Γjj = −∞ for all j ∈ J (implying that sjj = 0). This was the
assumption in Gentzkow (2007) where the two goods were subscriptions to online
and printed news papers respectively. In that context, and in many others, there is
no meaningful quantitative aspect to single good demand. In our setting, however,
a non-trivial number of households buy cars of the same type, which we refer to as a
specialized bundle, d = (j, j). With binary demand, we furthermore prove that two
goods j and k are complements if and only if Γjk > 0. With non-binary demand
(Γjj,Γkk > −∞), we need strictly higher values of Γjk to satisfy C.3. Intuitively,
we can interpret Γjk as the demand synergy and Γjj as the single-good (negative)
satiation in demand. The less satiation there is, the stronger synergy is required to
satisfy C.3.

Table 3 shows that there is positive synergy (ΓEV,CV > 0) between an EV and
a CV for all samples of household with the exception of two: the middle-income
and single households. It makes sense that the two cars would not be complements
single households since they are so unlikely to buy two cars in general and since all
cars would be strict substitutes if the two-car bundles were unavailable (i.e. in a
one-car model).
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Before finishing, it is worth commenting on the fact that the only group of house-
holds that satisfies all complementarity criteria is the poorest decile of households.
This may seem counterintuitive given that very few households in this group own
two cars (2.1%). But on the other hand, most of them own no car (83%) which
means that in spite of the apparent EV-CV synergies, the household group is un-
likely to play a large role for the aggregate effects of policies. Nevertheless, we shall
see that our structural model also identifies complementarities frequently among the
poorest households.

4 Model

In this section, we present our model of household choice of car and driving. 4.1
presents the model briefly, while 4.2 discusses the parameterization and intuition.

4.1 A Discrete-Continuous Model

We now extend the random utility model from before so that mean utilities and
portfolio effects are functions of the choice of driving.

Vi0 = Ui0 + εi0,

Vij = Uij(xij) + εij,

Vijk = Uij(xij) + Uik(xik) + Γijk(xij, xik) + εijk,

where (xij, xik) denotes the chosen driving (in km) in car j and k respectively, and
(εid)d∈D are IID Extreme Value Type 1. The outside option is the only unchanged
utility, which we specify as

Ui0 = ωi,

capturing that households are heterogenous in their access to and relative preference
for alternative modes of transport. We do so in a two-period framework following
Gillingham (2012). The (ex ante) utility from choosing car j is

Uij(x) = uij1 + βE[uij2(x)], (3)

where β is the discount rate, x is driving in km, and uij1, uij2 denote the flow
utilities for period 1 and 2 to be described in the following. Expectations are shown
to highlight the distinction between fuel prices at the time of purchase and driving.
We will assume that households have myopic expectations, i.e. that discrete choices
are made conditional on observed fuel prices in the year of purchase.20 Utility will

20The fact that preferences are quasi-linear implies that consumers cannot be (that) risk averse.
Therefore, allowing non-degeneracy (e.g. a unit root expectation process) is unlikely to affect
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be quasi-linear in outside expenditures, with fixed marginal utility of money equal
to γi.

Our specification heavily relies on the assumption that households are forward-
looking and internalize all monetary aspects of car ownership. The literature has
found some evidence for (Busse et al., 2013; Grigolon et al., 2018) and some against
this assumption (Gillingham et al., 2021).

In the first period, the car is purchased, yielding utility

uij1 = −γiPij,

where Pij is the purchase price. In the second period, the car is enjoyed, driven x

km, fuel expenditures and other flow costs FCij (annual taxes) are incurred, before
the car is resold at the end of the period at the depreciated price P̃id < Pid. Thus,

uid2 = γi
(
P̃ij − FCij − pkm

ij x
)

+ vij(x) + ξij,

where vij(x) is the utility from driving, and ξij is the part of car ownership utility
unrelated to driving (a linear index of car characteristics), pkm

ij is the cost of driving
one km. Note that the price of driving, pkm

id , and annual ownership costs, FCid, can
vary across households due to the presence of road tolls, and with d because EVs
are exempt from these, and because annual car taxes vary with the car type.

Finally, the utility of driving is specified as a quadratic,

vid(x) = α1ijx+ α2x
2,

which will admit a computationally simple form for optimal driving.21 Allowing α1ij

to depend on demographics and car attributes permits households with higher work
distances to gain higher utility from driving, and cars with larger engines to be more
enjoyable to drive.22

Optimal driving for one-car portfolios is found from the first-order condition:23

x∗ij = 1
−2α2

(
α1ij − γipkm

ij

)
. (4)

With two-car portfolios, optimal driving in the cars become linked due to Γijk(xij, xik):

results much.
21Theoretically, this means that the marginal utility of driving can become negative for high

values of x, but we do not find this to be an issue in practice.
22We have also experimented with heterogeneity in α2, to allow for differences in the curvature

of the driving function, but found that this did not improve the fit visibly.
23In practice, we do not find issues with negative predicted driving to be an issue. This is unlike

supermarket shopping applications, where zero expenditures are common and so non-negativity
constraints must be taken seriously (Thomassen et al., 2017).
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Optimal driving, x∗ijk ≡ (x∗ij, x∗ik) should then solve the system

x∗ij = 1
−2α2

α1ij − γipkm
ij + ∂Γijk (xij, x∗ik)

∂xij

∣∣∣∣∣∣
xij=x∗ij

 ,

x∗ik = 1
−2α2

α1ik − γipkm
ik +

∂Γijk
(
x∗ij, xik

)
∂xik

∣∣∣∣∣∣
xik=x∗

ik

 .
Taken jointly, optimal portfolio driving is (x∗id)d∈D. When plugged back into the

ex ante random utility, (3), we obtain the “indirect utility” which households base
their car choice on: di = arg maxd∈D Uid(x∗id) + εid.

4.2 Parameterization

We now describe and discuss how we parameterize the random coefficients of our
model, (ωi, γi, α1ij, ξij,Γijk(·, ·)). These coefficients depend on household character-
istics, denoted zi, and car characteristics, denoted qj, both of which we describe in
Section 5.2.

ωi = ω′zi, γi = γ ′zi, α1ij = α′zzi +α′qqj + ϕ1ij, ξij = ξ′qqj + ϕ2ij. (5)

The coefficients (ϕ1ij, ϕ2ij) handle EV-specific aspects related to driving and own-
ership respectively, and we cover those in 5.2.1.

Note that since zi shifts the utility of having no-car through ωi, it is not included
in ξij. In discrete choice models without bundle options, this choice makes no
difference. With bundles, however, the demographic shifter would be added twice
for two-car choices, but only once for one-car choices. Therefore, we prefer to have
it enter in the outside option utility.

The parameterization of the portfolio effect, Γ, is one of the key contributions of
our paper. We set

Γijk(xij, xik) = Γ1 + 1{j 6= k}Γ2jk + Γ3(xij + xik) + Γ′4(qj −qk)(xij − xik) + Γ5xijxik,

and below we describe each of these five terms in turn before discussing alternative
options. First, Γ1 captures the general satiation in utility for the second car com-
pared to the first car, in a way that is unrelated to driving. Thus, Γ1 controls the
overall proportion of two- to one-car households. Γ2 will instead permit demand
synergies between distinct car types in a way that does not relate to driving. Γ3

allows satiation in driving in the sense that the marginal utility of driving can be
different in two-car portfolios. Γ4 captures preferences for specialization of driving
in the two cars, causing households to shift driving towards the car with the highest
characteristic qjm if Γ4m > 0. Finally, Γ5 allows for a non-zero cross-price derivative
of driving, so that driving can be substitutes (if Γ5 < 0) or complements (Γ5 > 0).
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To see more clearly how the different portfolio parameters work, let us first
consider the optimal driving with a d = (j, k) bundle, supposing that Γ5 = 0:

xij = 1
−2α2

[
α1ij − γipkm

ij + Γ3 + Γ′4(qj − qk)
]
, (6)

and vice versa for xik. Here, it is clear that Γ3 simply affects the mean driving of
j regardless of what k is, whereas the Γ4-term shifts driving, i.e. it reduces the
driving of one by the same amount that it increases the driving in the other car.
However, this shift is independent of the prices of driving in the two cars, (pkm

ij , p
km
ik ).

Permitting Γ5 6= 0 then yields

x∗ij = 1
1−

(
Γ5
2α2

)2

(
xij −

Γ5

2α2
xik

)
. (7)

From this, we can directly see that Γ5 alone will determine the sign of any cross-price
derivative, and thus in particular whether driving in car j and k are substitutes or
complements.

5 Empirical strategy

In this section, we first explain the econometric methodology for taking our model
to the data and estimating parameters and conducting inference. Next, we discuss
identification, both intuitively regarding what variation in the data pins down each
parameter, but also specifically concerning exogenous variation in prices and other
monetary variables. Finally, we discuss some practical choices, particularly in regard
to how EVs are treated in the implementation of the model.

5.1 Likelihood Function

Our model features two decisions: the discrete car choice and the continuous driving
choice. The full information likelihood will thus have a contribution for each term:
a logit part for the discrete choice, and a Gaussian for the continuous choice.

For the discrete car choice, we assume that agents solve

max
d∈D

Uid(x∗id) + εid,

where εid are distributed IID Extreme Value Type I, and where D denotes the set
of all singleton cars, J , and all unordered pairs, (j, k), of which there are 1

2J(J−1),
as well as the outside option of having no car. For choices involving two cars, the
notation subsumes the driving in both cars, i.e. x∗id = (x∗ij, x∗ik) for bundle choices
d = (j, k). The agent observes εid, but the econometrician does not, leading to the
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usual logit choice probabilities

Pri(d) = exp [Uid(x∗id)]∑
d′∈D exp [Uid′(x∗id′)]

.

Regarding driving, we assume that we observe the optimal driving with additive
Gaussian measurement error, i.e.

xdata
i = x∗idi

+ ηi, ηi ∼ IIDN (0, σ2
x),

where di denotes the chosen car alternative for household i, barring the fact that no
driving is observed when di = 0.

We use full information maximum likelihood and thus

L(θ) =
N∑
i=1

log Pri(di) +
∑
j∈di

log 1
ση
φ

(
x∗ij − xdata

ij

ση

) , (8)

where in an abuse of notation, we use di as a set of one or two elements, and there
is no driving contribution when di = 0.

The exposition above has been simplified for expositional clarity, with details
relegated to Appendix C.2. The exposition ignores two aspects: first, the asyn-
chronous nature of our driving data. That is, a household can purchase an second
car midway through the first car’s driving period, or the car can change owners
between inspections. The driving sub-likelihood that we take to the data captures
this precisely, by performing predictions at the sub-period level (where ownership
and portfolio is constant), and aggregating to the driving period level, weighted by
the fraction of the driving period covered by each sub-period.

The second simplification is that we work with unequal sample sizes. For compu-
tational reasons, we are forced to reduce the number of discrete choice observations
to a random 0.2% subsample (N = 52, 739). However, we are much less constrained
in terms of the driving sub-likelihood, and because the driving and discrete choice
components of (8) are additively separable, we choose to use a larger sample of
S = 2, 588, 591 driving periods. With these sample restrictions, numerical optimiza-
tion wrt. 47 parameters takes several days.

5.2 Implementation

This section will describe how we implement our model using the Norwegian data.
Specifically, we will describe our choices of demographics, zi, car characteristics, qj,
specification for fixed costs of car ownership, FCid, and the two EV-specific effects
in (5), ϕ1ij, ϕ2ij. Apart from this, the annual discount rate, β, is the only parameter
we do not estimate but fix at 0.95.24

24More specifically, we use a discount rate of
(
0.95 + 0.952 + 0.953) /3 = 0.903 since the “second

period” has a three year duration. The only exception to this is the resale price of the car: as
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First, the vector of household observables is

zi = (log(net income),WD, age,1{live in major city},1{couple}, constant)′ ,

where net income is summed over spouses, while work distance (WD) and age are
averaged. Note that we do not include employment as a demographic. Employment
will mainly affect household decision making through (1) increased purchase power
and (2) increased driving demand due to commuting. These channels are already
taken into account through income and work distance.

The vector of car attributes is

qj =
(
car age, car age2,weight, engine effect,1{EV} × engine effect,1{EV},1{diesel}

)′
.

We experimented with additional engine characteristics such as displacement, but
found it to be nearly collinear with weight and engine effect.

5.2.1 Special Treatment of EVs

In the vector of car characteristics, qj, we allow engine effect to have a different effect
for EVs compared to CV. There are two reasons for this: First, electric engines are
based on different technology – one difference is that they tend to achieve a higher
acceleration than internal combustion engines with similar effects. Second, it enables
us to more flexibly fit the difference in preferences for small and large/luxury EVs.25

Other than the separate engine effect for EVs, we treat EVs differently in three
regards: the EV’s range can affect driving and ownership utility (ϕ1ij and ϕ2ij), and
then we include a term to allow for demand synergies between an EV and a CV.
First, ϕ1ij should allow for range to affect the utility of driving. Specifically, having
a long work distance (WD) and a low range should make the EV impractical for
daily commutes. To capture this, we set ϕ1ij ≡ ϕ11{WDi > 0}1{j is EV} rangej

WDi
.26

ϕ1ij < 1 would mean that the car must recharge at least once on the way to work.
Relating the variable to WD has a further effect in that otherwise, range and engine
effect are very highly correlated, so this way we avoid near multicolinearity.

The second variable that captures EV aspects, ϕ2ij, relates to local incentives.
We want the model to capture the non-price policies affecting EV ownership. These

the car is sold at the end of the third year, the resale value is discounted by 0.953. This subtle
point is omitted from Section 4 where, to ease the exposition, we only considered two periods.
An alternative to Equation 3 would have been Uid = uid1 +

∑4
t=2 β

t−1E (uidt), which is what we
approximate with our discount factor.

25The large EV has three times the engine effect of the small EV, whereas the corresponding
difference between a large and small CV is roughly 1.5 times (see Table A.2).

26We encountered a small number of very low values of WDi, resulting in very large ϕ1ij . To
deal with this, we use max(WDi, 5) (and have experimented with other floors than 5 km, finding
that it makes little difference).
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include the benefits of free parking and charging in cities, as well as access to public
transport lanes to avoid congested roads in rush hours. Since these benefits are best
captured by an agent working in an urban area, we include the following dummy
variable: ϕ2ij = 1{j is EV} × 1{i works in major city}.27

The third and final variable that captures EV aspects, Γ2ijk, should capture
demand synergies between an EV and a CV relating to the concept of range anxiety.
We view this as a household’s reluctance to purchase an EV because it may make
very long trips, e.g. for holidays, unbearable due to the large number of required
stops to wait while recharging. The fact that such trips are rare means that they
might not be visible in average driving over two to four years, but might still be
(overly) salient to consumers. A simple way to do this would be to set Γ2id equal
to a dummy for an (EV, CV) portfolio. To maintain the interpretation as range
anxiety, we instead set it to

Γ2id = Γ2 [1{d = (EV)}+ 1{d = (EV,EV)}] ,

so that Γ2 will be a penalty imposed for choosing an EV without also having a CV.
This way, the same range anxiety that keeps one-car households from choosing an
EV will keep two-car households from choosing a double-EV portfolio. Note that
there is a dummy for EV in zj.

5.2.2 Price Variables

Finally, we will describe the cost elements in the model. Ownership cost has two
components. First, the purchase price of the car portfolio, Pid, net of the resale
price, P̃id. There is no cross-sectional variation in car prices, so the i subscript only
signifies that households face different prices at different points in time. Second,
other fixed costs associated with the car portfolio, FCid. These are specified as

FCid = θtolltollid + ownership taxid + maintenance costsd, (9)

where ownership taxes vary over time and between EVs and CVs, and expected
maintenance costs only vary with the age of the car,28 and tollid denotes road toll
payments. We assume tollid to be zero if the household owns an EV, and otherwise
equal to the monetary cost implied by the household’s toll exposure assuming 220
days of commuting by car each year. As we do not know the average fraction of
days toll-exposed households commute by car, θtoll, we estimate this parameter from

271{i works in major city} is not strictly and indicator variable, as we let it take the value 0.5
in cases where the household consists of two adults but only one of them works in a major city.

28An alternative would be to let expected maintenance costs affect the variable cost of driving.
However, assuming that maintenance costs are considered as fixes is consistent with the literature;
see e.g. Hang et al. (2016).
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the data. That is, if θtoll is one, it implies that households cross the toll road two
times per day, 220 days per year, whereas a value of zero implies that they never
cross it. We have thoroughly explored whether households treat tolls as a variable
or a fixed cost of driving and even estimated both versions of our model, ultimately
concluding that the fixed cost version yields a superior fit along all dimensions and
picking that for our preferred specification.29 The implication is that tolls affect
only the extensive and not the intensive margin. Finally, note that we do not take
into account road tolls paid on non-work trips.

Driving cost per kilometer is defined as pkmij = fuel priceij/fuel efficiencyij, where
fuel is either gasoline, diesel, or electricity. The purchase and driving decisions occur
at different points in time which we account for: for the purchase, we take the
average fuel prices from the previous year, assuming that households have static
expectations. For the driving, we compute the realized average price over the course
of the days covered by the specific driving period.

5.3 Identification

We now turn to the question of identification, both in a statistical sense and in an
intuitive sense. We pursue a full information maximum likelihood method strategy,
we leverage all aspects of behavior to identify the parameters. However, similarly to
the Heckman (1979) selection model, it is possible to think of the model as composed
of two separate parts: a linear regression for driving and a logit model of car choice.
Discussing identification in these two avenues is thus more familiar and simpler.
Finally in Subsection 5.3.3, we discuss the sources of exogenous variation in price
variables in our data.

5.3.1 Driving (γi, α1ij)

From data on driving of one-car households alone, the parameters (α1ij, γi, ση) are
identified. If we fix the value of α2, then (4) is just a linear equation, so we can
estimate parameters by linear regression. We simply regress driving on household
and car characteristics, (zi,qj), and an interaction with the price of driving, pkm

ij ×
zi. The intuition for identification is thus straightforward: e.g. γi is identified by

29To explore whether tolls should be a variable or fixed cost, we examined the relationship be-
tween driving and tolls and found that households responded much less to tolls than to other
monetary variation in the cost of driving (in a richer model of driving, one might imagine that
households have luxury trips and necessity trips and that commuting is perhaps a necessity, ex-
plaining the weak intensive margin response to toll prices). Furthermore, assuming tolls to be fixed
circumvents the issue of where households conduct marginal leisure trips (not all households go to
their office in weekends) and which tolls roads such trips might cross.
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observing how different households change their driving in response to fuel cost
shocks.

Adding data on driving by two-car households, we can furthermore identify
(Γ3,Γ4,Γ5). First, Γ3 is identified from the difference in driving of the same car
whether it is the only car of the household or belongs to a portfolio, other things
equal. As discussed in Section 2.5, cars in two-car portfolios are on average driven
slightly more than in one-car portfolios. Conversely, we saw strong effects of port-
folio shifting, whereby the household redistributes driving towards the car that is
youngest and has the most powerful engine in its portfolio. This effect is captured
by Γ4. Intuitively, it can be identified from the change in driving of the first car of
a household that swaps the second car.

The final coefficient, Γ5, is what allows for a non-zero cross-price elasticity of
driving between the two cars, thus allowing driving to be either complements or
substitutes in the two cars. Thus, it can be identified by comparing the driving of
a household with the same portfolio as fuel prices change over time.

Note that (α1ij, γi,Γ3,Γ4) can be estimated by linear regression because (6) is
linear. The results hereof are presented in Appendix Table B.3. Once we add Γ5,
the driving equation, (7), becomes non-linear, so estimation must be conducted by
Maximum Likelihood.

5.3.2 Discrete choice (ω, ξ,Γ)

The parameters (ωi, ξij, α2,Γ1,Γ2) are identified solely from discrete choices. We will
discuss these first before turning to the benefit of joint estimation by full information
likelihood.

First, ωi shifts the utility of the outside option. Therefore, it directly fits the
share of no-car ownership for households with demographics zi. Conversely, ξj shifts
the utility of car j all else equals. In a purely one-car model without two-car options,
this directly controls the market shares of each car.

The coefficient α2 controls the curvature of driving utility but is not identified
from driving data alone. It only becomes identified once discrete choice data is
added, and then it controls the importance of driving utility relative to other sources
of utility.30

Finally, two of the portfolio parameters are only identified from discrete choice
data, Γ1 and Γ2. The first, Γ1, captures satiation in the number of cars owned.

30This is simplest to see for one-car households: because α2 enters in the denominator of optimal
driving x∗ij in (4), the two sets of coefficients (αz,αq,γz, α2) and (λαz, λαq, λγz, λ

−1α2) result in
identical x∗ij for any λ 6= 0. Conversely, choice probabilities will be different.
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Conditional on the remaining parameters of the model, it directly affects the market
share of the symmetric bundle d = (j, j) relative to the corresponding one-car choice,
d = j. Conversely, the coefficient Γ2 controls the market shares of (EV), (EV,EV).31

5.3.3 Exogenous Price Variation

In this section, we discuss identification of the marginal utility of money, γi. Partly,
identification comes from behavioral restrictions such as rationality, fungibility of
money, and our assumption of static expectations for fuel prices. The other part is
the variation in monetary variables in our data. Below, we go through the sources of
variation for the following three key variables: fuel prices, road tolls, and consumer
car prices.

First, fuel prices varied considerably over the sample period (see Figure A.4),
between 12 and 15 NOK per liter of gasoline, and between 0.9 and 1.2 NOK per
kWh. Since no significant reforms of fuel taxes occurred, the time-series variation is
largely due to the world market oil prices.

Second, road tolls are an important local monetary policy in Norway, making up
1
6th of total car related tax revenue. Road tolls as well as the EV exemption from
tolls provide identifying variation in the cost of an EV relative to a CV along two
dimensions: time-series variation in toll rates and toll locations, and cross-sectional
variation in toll exposure on work trips depending on home and work locations.

There is substantial variation in toll levels, both between and within different
geographical areas – for instance, two neighbors might have similar work distances
but commute in different directions. In 2017, around 20% of households (and 40%
of households with positive work distances) were exposed to tolls on their way to
work. The toll amount is substantial: the top ventile (5% of the data) faced 30,000
NOK and the second-highest ventile 15,000 NOK annually.32 Given that a small
new gasoline car costs 46,166 NOK annually in depreciation and taxes (Table A.2),
this is a considerable amount. As we discussed in Section 2.4, endogeneity due to
residential sorting does not appear to play a big role when we explore variation
within and across households in neighborhoods.

Our third and equally important monetary variable is the new car price. The
registration tax in Norway typically makes up between 25 and 50 percent of the final
price, with EVs being fully exempt. As discussed in Section 2.1, the tax composition
faced dramatic reforms in our sample period, shifting from an emphasis on engine
power towards CO2 emissions.

31Note that there is also an EV-dummy in ξij to control the relative baseline market shares of
EV and CV.

32This assumes 220 days of commuting by a CV.
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We argue that these reforms of the registration tax scheme were sufficiently large
as to be the dominant source of price variation in our data. In order to investigate
this, we run a regression of price on exogenous car attributes, qj. We run two version
of this regression, one for each component of the final consumer price: one for the
total registration tax payment of the car, and one for the price net of the tax (the
producer price). Results are in Appendix Table A.4 and the key takeaway is that the
R2 is 0.96 for the producer price but only 0.70 for the tax component. This means
that after accounting for changes in car characteristics over time, there is only 4%
residual variation in the firm’s price; conversely, there is 30% residual variation in
the tax payment.33 We conclude that while price endogeneity may of course still
determine the remaining 4% of producer price variation, the vast majority of the
variation in prices is policy-induced.

We emphasize that the reason why there is so little residual variation in pro-
ducer prices and so much in taxes is due to our coarse aggregation of cars into just
20 types. The approach works because registration taxes vary greatly across these
types. Conversely, if product quality is independently distributed across the char-
acteristics space (as assumed by most state-of-the-art empirical IO methods), then
averaging across products within a segment is likely to take away this idiosyncratic
variation. Note that this also means that our approach cannot be used to study
anything that is firm-specific (e.g. market power), since we average over many firms
within car types.

Finally, we will discuss some of the limitations of our approach. First, we do
not observe transaction prices either for new or used cars, but are instead forced to
rely on suggested retail prices and fixed depreciation schedules. Second, we ignore
some niches of the car market like company cars and leasing due to lack of data.
Third, our data on maintenance cost is very limited and only varies with the car’s
age, again due to data limitations.

5.4 Methodology for Counterfactual Simulations

This section provides the details underlying our counterfactual simulations. We will
use these both to compute the marginal effects on various outcomes in Section 6,
and for our policy analysis in Section 7.

All our counterfactual simulations are based on the population in 2017. All
33Note that since the registration tax is a deterministic function of the producer price, we can

achieve a perfect fit with piece-wise linear functions in a given year. The remaining 30% residual
variation is due to the reforms that change this schedule from year to year. Johansen (2020)
exploits the same variation and provides a more detailed decomposition and analysis with a more
fine-grained choice set.
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reported outcomes, aid, are averaged over the households in the sample and expected
with respect to the discrete choice probabilities:

as = N−1∑N
i=1

∑
d∈Di

Prsi (d)asid, (10)

where s = 0, 1 denotes the scenario: baseline and counterfactual, respectively. Ex-
amples of such outcomes, aid, include the number of cars, km, or CO2 emitted.

Furthermore, we take into account externalities due to driving. We take mone-
tary constant marginal externalities per kilometer driven from Rødseth et al. (2019),
as described in Appendix A.4.3. All outcomes are computed at the annual level.

Car taxes consists of the registration tax and VAT (paid for new cars only),
fuel taxes, tolls on the work route and the annual ownership tax. We assume 100%
passthrough of both fuel and registration taxes, which is empirically plausible.34

Furthermore, we assume that used-car prices always follow the fixed depreciation
schedule of 12.5% annually. This implies a full “proportional” passthrough in the
sense that when the price of a brand new car falls by 20%, all used cars of that type
also fall by 20%.35 Robustness checks to this assumption is included in Appendix ??.

The consumer welfare measure is the usual “logsum” (Small and Rosen, 1981)

CSsi = 1
γi

log∑d∈D exp[U s
id(x∗id)]. (11)

Our social welfare measure is then

social welfare = tax revenuei + CSi − externalitiesi.

Since utility is quasi-linear, there are no income effects and so our model is neutral
to redistribution. Instead, we will simply report whether the policies we simulate
are progressive or regressive, leaving it to the policy maker to judge the relative
weight that should be attached to distributional concerns.

6 Results

We will now present our parameter estimates and their marginal effects on outcomes
of interest, and discuss the model fit and implied elasticities.

34This is consistent with Norway being a small, open economy. Furthermore, in related work
Johansen (2020) provides evidence that the pass-through of tax changes as a result of changes over
time in rates of the registration tax in Norway is insignificantly different from 100%. Gallagher and
Muehlegger (2011) finds a pass-through of fuel taxes to consumer prices in the US of approximately
100%, and Adamou et al. (2013) find that there is little difference between assuming a 100% pass-
through of purchase taxes and estimating supply side responses for the car market in Europe. With
regards to EVs, Muehlegger and Rapson (2018) find the pass-through of subsidies in California to
consumer prices to be indistinguishable from 100%.

35Modeling the interaction between the primary and secondary market requires an equilibrium
model along the lines of Gillingham et al. (2022).
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6.1 Parameter Estimates

Table 4 displays the parameter estimates from our preferred specification. All pa-
rameters have the expected sign and are statistically significant as indicated by the
t-values. For instance, richer households have a lower marginal utility of money, and
households with longer work distances have a higher utility of driving. Households
living in urban areas have a higher utility of the outside option of not owning a car,
likely due to better access to alternative modes of transportation. And households
with a high work distance have higher α1ij but lower γi, consistent with higher driv-
ing needs for commuting and that commuting needs are less price sensitive than
other trip types on average.

The portfolio estimates also have the expected signs: Γ1 is negative, so there
is diminishing utility from the second compared to the first car. Estimates also
indicate strong range anxiety in ownership utility (Γ2 < 0) and to a smaller extent
related to driving (ϕ1ij < 0), but the presence of local EV incentives are important
to consumers (ϕ2ij = 1.58).

The estimate of Γ5 is negative, −.001, implying that in two-car portfolios, driving
in the two cars are substitutes. This confirms earlier findings by De Borger et al.
(2016), although our estimates imply a low cross-price elasticity of 0.006. Moreover,
the estimate (combined with Γ3) implies that most cars are driven slightly less in
two than one-car portfolios. For example, the “large new EV” is driven 51 km daily
by the average household when alone, 45 km each when owning two copies of it (see
Appendix Table D.3). The estimated vector Γ4 reveal strong portfolio shifting, with
households preferring to allocate more driving to the car that is youngest and has
the most powerful engine. This shifting implies that households have preferences for
diversification in car characteristics.

For use in our counterfactual analysis later, we have also estimated an alternative
specification where we set all 11 synergy coefficients in Γij to zero. Those estimates
are presented in Appendix Table D.4. Unsurprisingly, a likelihood ratio test of the
null that Γij = 0 yields a value of 961.96, which is clearly rejected.

6.2 Model Fit

We evaluate the model’s fit out of sample on a 10% random sample not including
our estimation sample.36 We start with the discrete ownership choice, and then
show the fit of driving.

Figure 3 shows that the model provides a reasonable fit of the number of cars
36Memory constraints on the computational server restrict us from using the full sample.
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Table 4: Parameter Estimates
Demographics: Driving (αz) Outside option (ωz) Utility of money (γz)
ln(household income) -0.0162 (18.3) -0.372 (-7.58) -0.537 (-10.8)
work distance (kms) 6.86e-4 (47.3) 9.54e-4 (12.2) 0.00966 (20.6)
age (avg) -0.00110 (-14.9) -0.0100 (-2.61) -0.0195 (-25.2)
1 {city} -0.0359 (-12.0) 0.186 (10.8) -0.380 (-4.3)
1 {couple} 0.0198 (7.93) 0.252 (13.0) -0.324 (-6.95)
cons 0.00938 (8.87) 8.22 (12.9) 9.61 (14.0)
Car attributes: Driving (αq) Car ownership (ξq) Portfolio shifting (Γ4)
car age 1.91e-4 (-15.7) 0.411 (49.1) 3.44e-4 (11.9)
car age2 -3.30e-4 (-12.7) -0.00860 (-11.8) -4.95e-05 (-8.05)
engine effect (100 kW) 0.0412 (7.44) 1.70 (7.76) 0.0131 (6.19)
engine effect× 1 {EV} -0.0255 (-3.94) -2.21 (-5.99) -0.00479 (-9.79)
total weight (tonnes) 0.0561 (15.0) -4.24 (-39.7) -0.00157 (-7.20)
1 {diesel} 0.0540 (19.1) -1.99 (-15.5) -0.00364 (-12.0)
1 {EV} 0.0599 (20.4) -2.36 (-12.7) -0.0312 (-11.3)

Other variables Portfolio effects
Range by work distance (ϕ1ij) 3.61e-4 (22.4) Ownership satiation (Γ1) -6.08 (-19.0)
Local EV incentives (ϕ2ij) 1.58 (11.3) Range anxiety (Γ2) -0.757 (-5.38)
Driving squared (α2) -0.00330 (-34.0) Driving satiation ( Γ3) 0.0325 (15.6)
SD of error term, driving (σx) 29.505 (533.1) Driving substitution (Γ5) -0.00102 (-19.3)
Realised toll payment share (θtoll) 0.445 (5.22)

Notes: Parentheses show the t-statistics corresponding to each parameter value using the
standard errors from the Sandwich formula in Equation 14. The results are based on a
random sub-sample of N = 52, 739 discrete choice observations. The driving dataset is
a 30% random sample of all driving periods, yielding S = 2, 588, 591 odometer readings
with an average of 2.2 sub-periods (due to ownership or portfolio changes).

owned across income and work distance distributions, with two-car ownership in-
creasing in both income and work distance. The model explains this by the fact that
richer households have lower marginal utility of money, combined with a stronger
dislike of the outside option.

In Appendix ??, we present additional fit graphs, including car attributes by
income and work distance (Figure D.2); car ownership over time (Figure D.3); and
car ownership by the J = 20 car types (Figure D.4). To summarize, the model is
able to capture the cross-sectional fit of ownership remarkably well, while performing
slightly worse when it comes to capturing changes over time. This is not surprising,
as no time trends or time specific coefficients are included – changes over time are
solely attributed to changes in demographics, car attributes or the choice set.

Figure 4 shows the data and model fit for selected driving-related outcomes. The
top panels show histograms of observed and predicted driving for one-car (left) and
two-car (right) households respectively. The dispersion of model predictions reveals
that a remarkable amount of heterogeneity is captured by the model through covari-
ates (similarly to a high R2 for the driving equation). This means that the model
can accurately capture which households have high or low driving needs, which is
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Figure 3: Number of cars by income and work distance
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crucial for capturing the selection into car types based on anticipated driving.
The bottom panels highlight portfolio aspects of driving. For instance, the left

panel shows that if one of the two cars is new and the other is ten years old, then the
new car is driven 45 km per day, and the old car is driven just under 35 km per day,
on average. The right panel shows a corresponding figure but with the difference in
the weight of the two cars, showing that households tend to allocate more driving
into heavier cars. In Appendix Figure D.1, we demonstrate the fit of driving for
one-car portfolios with respect to car age, car weight, income, and work distance.

6.3 Elasticities

The parameter effects themselves can be interpreted to some extent, but calculating
marginal elasticities is more directly comparable to existing literature. To compute
these elasticities, we first compute expected outcomes according to (10), and then
re-compute after increasing the exogenous forcing variable in question by 1%. Table
5 presents the elasticities of our model evaluated on the 2017 cross section.

The first two columns show the elasticity with respect to income and work dis-
tance. Mostly, the two variables have the same qualitative effect, but the income
elasticity is numerically larger. For instance, raising income by 1% results in 0.42%
more cars, while increasing work distance by 1% only results in 0.03% more cars. A
key difference between income and work distance, though, is that when a household
becomes richer, it shifts towards the diesel segment, whereas a longer work distance
implies a greater shift towards an EV.

The next three columns increase fuel prices: first for CV alone, then EV alone,
and then both. The last three columns do the same, but for the new car prices
instead. We assume that the price increases were due to increased taxes under full
passthrough to new car prices. We assume that used-car prices always obey the
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Figure 4: Driving
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Notes: The top panels show the distribution of driving in the data and the distribution of predicted
driving. In the bottom two panels, the x-axis is a difference in characteristics between the two cars
for two-car households: age and weight (in tonnes) respectively. Driving is measured in kilometers
per day per car.

fixed depreciation rate of 87.5% annually described in Section A.
Turning to driving, we see that the overall price elasticity of driving is -0.14.

This is slightly below some estimates such as the −0.3 found by Gillingham and
Munk-Nielsen (2019) for Denmark, but above some estimates for the US. We also
note that in aggregate, EVs and CVs are substitutes: the cross-price elasticity of the
number of EVs with respect to the CV purchase price is 0.35, and for the fuel price
it is 0.21.

The results in Table 5 indicate aggregated own-price elasticities of –0.10 and
–0.31 for the gasoline and diesel cars segments, and –0.97 for EVs. This is seemingly
quite far from typical estimates of the own-price elasticity of car demand but is due
to the aggregation to fuel segment. Instead, Appendix Table D.1 shows a full matrix
of cross-price elasticities for the sales of individual cars. For new cars, we see own-
price elasticities more in line with the literature, ranging from -1.7 (small gasoline) to
-3.4 (large diesel) for traditional cars, and -1.5 for the small EV and -3.8 for the large
EV. Similarly, the cars that lose most demand to the outside option are the cheapest
cars (e.g. 0.093 for the “large diesel, 5–11 years”), and lowest for the “large new EV”
(0.0017). This is due to the demographic composition of the marginal households
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in the market. We have also disaggregated the cross-price elasticities by income
(results available upon request) and the poorer half of households have an average
own-price elasticity that is nearly twice that of the richest half of households.

Finally, we turn to the question of portfolio synergies and complementarity. First,
we note that no two cars are Hicksian complements to all households, and none are on
average. However, most are to some subset of households. Most notably, the small
EV and the large, new diesel car are Hicksian complements to 16% of households.
(Appendix Table D.2). Conversely, only about 1% of households have sufficiently
strong synergies between typical (CV, CV)-pairs for them to be complements.37

However, there can still be strong portfolio synergy between two cars without it
being strong enough to imply strict complements. Table 6 visualizes a measure of
portfolio synergy given by the average supermodularity of utility:

∆ijk ≡
[
Uijk(x∗ij|2, x∗ik|2)− Uij(x∗ij|1)

]
−
[
Uik(x∗ik|1)− Ui0

]
, (12)

where x∗ij|2, x∗ij|1 denotes the optimal driving in car j when it is in the (j, k) portfolio
and in the singleton portfolio respectively. There are two reasons why we prefer
to show ∆ijk rather than Γijk. Firstly, ∆ijk takes into account that a car j is
driven differently when combined with k compared to alone, and this is precisely
the deep form of synergy our model is meant to capture. And secondly, we have
parameterized range anxiety as a penalty to the single-EV portfolio rather than a
bonus to the (EV, CV) combination. Note that if there were no driving, homogenous
parameters, Ui0 = 0, and no range anxiety, then ∆ijk = Γijk. 38

Table 6 shows that portfolio synergy is strongest precisely between the small EVs
and the larger CVs. Within the CV segment, synergy is strongest between the most
diverse cars: the small, oldest, cheapest gas car and the large, luxurious, new diesel
car.

7 Counterfactuals

In this section, we investigate the relative cost-effectiveness of three environmental
policies in use in Norway through counterfactual simulations: (1) the VAT exemption
for EVs currently in place, (2) increasing fuel taxes for diesel and gasoline, and
(3) increasing purchase taxes for CVs. Each of these policies are motivated by

37We note that the 1% of households that display complementarity frequently are often house-
holds with a high probability of choosing no car. It may seem puzzling to find complementarity
among households unlikely to own two cars but it is a property of the logit model. Intuitively, it
is related to a violation of the monotonicity property discussed by Manzini et al. (2019).

38More generally, ∆ijk captures the notion of a “discrete double derivative” mentioned by
Gentzkow (2007). In Gentzkow’s model, ∆ijk > 0 iff. j and k are complements. But since
we have non-binary demand, ∆ijk > 0 is necessary but not sufficient (see Appendix C.1).
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environmental goals of reducing CO2 emissions, and each contribute toward this
end. In order to make the policies comparable in magnitude, we set the rates in
(2) and (3) so that they yield the same CO2 reduction as (1), which we find to be
7.3 kg per household in 2017. To achieve this, we raise the fuel tax proportionally
until emissions have also fallen by 7.3 kg, at which point consumer fuel prices have
increased by 2.06%. We do the same for the CV VAT, and the final increase amounts
to 1.62% higher car prices. These magnitudes line up well with the elasticity of CO2

emissions wrt. the fuel and purchase prices in Table 5.
The results are shown in Table 7. The bottom line is that the most cost-effective

policy tool is the CV fuel tax, followed by the CV purchase tax, and finally the EV
exemption from VAT. The abatement costs per ton of CO2 are 897, 13,481, and
26,740 NOK per tonne respectively.

It is not surprising that the fuel tax is able to achieve a given reduction in CO2

with lower distortions given that it allows consumers to respond on both the intensive
(driving) and extensive (type choice) margins. Conversely, a uniform increase in the
VAT is mainly a tax on the most expensive cars, so the primary way this affects
emissions is by pushing households out of car ownership entirely. This is clear
from the fact that the reduction in total driving is 35% greater with purchase taxes
compared to fuel taxes. That is, the purchase tax achieves emission reductions by
reducing car ownership altogether whereas the fuel tax shifts driving towards more
efficient cars, whereby the same reduction can be achieved with a smaller reduction
in driving.39

The EV exemption from VAT is similar to the CV purchase tax in that it targets
the vehicle purchase, rather than use. However, ex ante one might have had higher
hopes for this policy given that it is incentivizing a vehicle type with zero emissions
(given Norway’s high reliance on renewables). Nevertheless, we see that the EV
incentive resulted in a drastic increase in overall car ownership of 3,769 cars. The
biggest change in portfolio choice is (CV, EV) which increases by 8,060 households.
Conversely, one-car EV-ownership only increases by 2,773. This is the first indication
that the EV-CV complementarity plays a role but we will focus more on this later.

An additional disadvantage of the EV exemption from VAT is that it results in
an increase in total driving. Even though this driving is in zero emission vehicles
(hence the reduction in CO2), driving also entails non-environmental externalities
such as accidents, congestion, and noise.

Before moving on, a brief note on the level of the abatement cost in relation to
39Naturally, the VAT-based policy would be improved by using an attribute-based tax rather

than a uniform proportional tax. We chose the uniform tax to have a parsimonious presentation.
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Figure 5: Welfare components by income decile
A: Increased fuel taxes
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B: VAT exemption for EVs
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Notes: Panels de-compose the welfare effect for deciles of the income distribution. The
top line is the change in consumer surplus. The second line is the change in annual tax
payments. The third line is the uniform lump-sum transfer required for the Government
budget constraint to hold, i.e. the negative of the average change in tax revenue. The
fourth line is the change in local exernalities. The final line is net welfare, i.e. the change
in consumer surplus net of transfers and local externalities. All outcomes are measured
in 2015-kroners per household per year along the y-axis.

the literature. The costs we find are generally higher than what has been reported
in the literature reviewed by Gillingham and Stock (2018): 160–410 NOK/tonne
for fuel taxes (Knittel and Sandler, 2018) and 3000-5700 NOK/tonne for direct EV
subsidies (Archsmith et al., 2015b). One reason for our higher estimated costs is
perhaps the much higher overall taxes on fuel and registrations compared to the US,
since one would expect marginal deadweight losses to be increasing in the level of
taxes.

7.1 Distributional effects

Since the model is quasi-linear in income, it is neutral to redistribution. Never-
theless, the counterfactuals are not budget neutral so we analyze the distributional
consequences under a uniform lump-sum net transfer to all households.

Figure 5 shows the average welfare, tax payments, and externalities across the
income distribution, by deciles. We see that for the fuel tax, consumer welfare net
of taxes is positive for the poorest five deciles, and increasingly negative for richer
households, clearly illustrating the progressivity. Conversely, the EV exemption
from VAT is strongly regressive with only the richest decile of households enjoying
a net benefit; while consumer surplus increases for the remaining households, it is
more than offset by the fall in tax revenue. So in conclusion: not only is the fuel tax
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more cost effective than the EV incentives, it also has more desirable distributional
consequences. In practice, the regressivity of EV incentives may be obscured by the
fact that car sales vary so much from year to year, making it difficult to notice the
fall in tax revenue.

7.2 The Role of Complementarities

We now assess what role complementarities play in driving the policy conclusions
above. One might think of simulating counterfactuals where we set Γijk := 0 but
keep all other parameters fixed. That is not optimal, however, because that im-
mediately implies a dramatic increase in two-car ownership. This is because Γijk
captures two things, the overall level of two-car ownership and the degree of portfo-
lio (anti-) synergy between two specific cars. Thus, we choose instead to re-estimate
all parameters except (Γ1, ...,Γ5), which are fixed at zeros. We then run the same
counterfactuals as in Table 7. This exercise answers the following question: What
does optimal policy look like when the data is interpreted through the lens of a
model without portfolio effects? The restricted estimates can be found in Appendix
Table D.4 while the counterfactuals are in Appendix Table D.5.

Table 8 shows the key excerpts from the comparison. Most importantly, ignoring
portfolio effects does not alter the fact that fuel taxes are the most cost-effective
tool for reducing CO2 emissions. However, it changes the relative balance of EV
incentives vs. CV taxes: In a restricted model without portfolio effects, the policy
maker would be roughly indifferent between the two (16,856 vs. 16,520 NOK/tonne),
while EV incentives are twice as expensive as CV taxes in the full model (26,552 vs.
13,481).

Looking at the shifts in ownership portfolios, we see that the single-EV portfolio
is too responsive in the model without portfolio effects. Both models agree that the
number of cars increased by approximately 3,700, and they agree that there will be
just over 8,000 additional households with the combined (EV,CV)-bundle. However,
the model without portfolio effects predicts nearly twice as many households becom-
ing single-EV owners (4,562 vs. 2,773). In other words, the single-EV portfolio is a
much closer substitute to the other portfolios in a model without portfolio effects.
The net change in the number of cars is roughly the same, but without portfolio
effects, 9,563 CV disappear (and get replaced by EV), compared to just 7,299 in
the full model. The difference in replacement rates is almost fully explained by the
difference in the number of new households becoming single-EV owners (4,562 vs.
2,773). With a greater replacement of CV by EV, households are shifted more into
zero-emission driving, which implies a greater reduction in CO2.
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Another way of seeing the same pattern is to count the replacement ratio: in
both models, there are more EVs and fewer CVs in response to the VAT exemption
for EVs. However, in the full model, there are 1.52 new EVs per discarded CV, while
the restricted model has 1.38 EV per CV.40 A ratio of 1.0 would imply a one-for-one
replacement of CVs by EVs, which the restricted model gets closer to.

One of the main drivers behind the willingness to switch to single-EV ownership
in the model is the range anxiety parameter, Γ2. This parameter is a utility penalty
for owning an EV but no matching CV in the portfolio: i.e. a penalty to the (EV)
and (EV,EV) portfolios. This captures the descriptive pattern we saw that EVs are
overrepresented in two- relative to one-car portfolios: both in the full sample and
narrowly in income decile groups.

It is important to note that a priori, it was possible that households could have
purchased the (EV,CV) portfolio but chosen to drive both cars half as much. How-
ever, our estimates show that once a household owns two cars, it tends to use both
quite a lot, the result is increased local externalities and a smaller reduction in CO2

emissions.41 This finding is consistent with Kverndokk et al. (2020) who survey CV
owners that have purchased an EV: only 10.8% state that they end up driving the
CV less.

8 Conclusion

In this paper, we have examined the effects of EV adoption policies in Norway, and
compared them to alternative environmentally motivated car policies. To do so, we
have developed a joint model for car ownership and driving where households can
own and drive zero, one, or two cars. For two car-portfolios, the model explicitly
allows cars to be substitutes or complements on both the extensive (ownership) and
intensive (driving) margins.

No cars are complements for all households. However, in some groups of house-
holds, we estimate strong synergies between EVs and CVs. In particular, we find
that the small EV and the large, new diesel car are complements to 16 percent of
households in our sample (in the sense of a negative cross-price elasticity).

Portfolio synergies arise from two channels: first, households are able to specialize
their driving by choosing cars suited for different trip types. Our structural model

40The full model has +11,068 EVs but -7,299 CVs, while the restricted model has +13,200 EVs
and -9,563 CVs.

41One-car models will completely miss this point, because cars will by definition be substitutes:
i.e. once a household purchases an EV in a one-car model, they are required to reduce their CV
driving to zero.
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explicitly accounts for this, and with the example from above, the household would
shift more driving towards the large diesel car when it is complemented with the
small EV compared to when it is owned alone.

The second source of synergy is through the ownership utility. Households are
reluctant to choose car portfolios with EVs if the portfolio does not include a CV
as well. We interpret this as broadly consistent with the popular notion of “range
anxiety,” whereby consumers are overly focused on the limited range of an EV even
though it will not affect their daily driving. This explains why we tend to see EVs
over-represented in two-car portfolios relative to one-car portfolios.

These forms of synergy are important for EV adoption policies, because they to
a certain extent make EVs come as an addition to an existing CV rather than as a
replacement for it. So while the new EV would not contribute to global pollution, it
still results in local externalities like congestion, accidents, and noise. Such external-
ities are sizeable for the sub-population of marginal EV adopters, which tend to live
in or around urban areas. Moreover, complementarity will increase the regressivity
of EV policies, since two-car ownership is increasing in income.

Counterfactual simulations indicate that if portfolio effects are not taken into
account, the abatement cost per tonne of CO2 will be under-estimated by around
30%. In contrast, simple fuel taxes discourages driving in CVs, which simultaneously
promotes EVs and targets both local and global externalities and is furthermore
progressive.
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Table 5: Elasticities (computed for the 2017 cross-section)

Demographics Fuel prices Purchase prices
Baseline Income WD CV EV Both CV EV Both

Car Portfolio Shares

Pr(0 cars) 0.272 -0.79 -0.03 0.21 0.00 0.21 0.35 0.01 0.36
Pr(1 car) 0.416 -0.01 -0.04 -0.00 0.00 -0.00 0.01 0.01 0.01
Pr(2 cars) 0.312 0.70 0.07 -0.18 -0.00 -0.18 -0.31 -0.02 -0.33

Number of Cars by Fuel Type

Number of cars 1.040 0.42 0.03 -0.11 -0.00 -0.11 -0.18 -0.01 -0.19
– EV 0.025 0.45 0.08 0.21 -0.07 0.14 0.35 -0.97 -0.62
– diesel 0.474 0.53 0.06 -0.13 0.00 -0.13 -0.31 0.02 -0.29
– gasoline 0.542 0.31 0.00 -0.11 0.00 -0.10 -0.10 0.02 -0.09

Driving

Driving (km/year) 14,501 0.50 0.06 -0.13 -0.00 -0.14 -0.23 -0.01 -0.24
– EV 378 0.47 0.11 0.23 -0.08 0.15 0.40 -1.03 -0.63
– Diesel 7,880 0.59 0.08 -0.15 0.00 -0.15 -0.34 0.02 -0.32
– Gasoline 6,242 0.39 0.03 -0.14 0.00 -0.14 -0.14 0.02 -0.13

Taxes and Costs (NOK)

Total tax revenue 22,979 0.84 -0.01 0.42 0.00 0.42 0.56 0.09 0.64
– Fuel 6,566 0.47 0.05 1.61 0.01 1.62 -0.19 0.01 -0.18
– Registrations 14,224 1.10 -0.04 -0.05 0.00 -0.05 1.01 0.12 1.14
– Toll 1,280 0.19 0.00 -0.08 0.01 -0.07 -0.13 0.09 -0.04
– Annual 909 0.41 0.03 -0.11 0.00 -0.11 -0.20 0.01 -0.18
Total ownership costa 32,740 0.53 0.02 -0.10 -0.00 -0.10 0.24 0.01 0.24

Externalities

Local externalities (NOK)b 10,820 0.56 0.05 -0.13 -0.00 -0.13 -0.23 -0.01 -0.24
CO2 emissions (tonnes) 2.209 0.49 0.06 -0.16 0.00 -0.16 -0.20 0.02 -0.19

Notes: All outcomes are per household per year, and monetary outcomes are in 2015 NOK.
a: Total ownership cost includes all expected monetary spending except fuel, i.e. the “rental
price” (purchase less depreciated resale price), annual tax, and toll payments.
b: Local externalities include noise, congestion, accidents, infrastructure, and local air pollu-
tion. See Appendix A.4.3.
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Table 6: Portfolio Synergies, 2017
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Small gasoline, 5-11 years
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Large diesel, 5-11 years

Small gasoline, 12-25 years

small diesel, 12-25 years

Large gasoline, 12-25 years

Large diesel, 12-25 years

Small electric, new

small electric, used

Large electric, new

Large electric, used

-1.48

-1.58

-1.48

-1.56

-1.45

-1.57

-1.49

-1.57

-1.37

-1.53

-1.46

-1.57

-1.06

-1.40

-1.28

-1.46

-0.80

-0.74

-1.13

-1.09

-1.71

-1.68

-1.76

-1.50

-1.67

-1.63

-1.74

-1.37

-1.59

-1.53

-1.69

-0.93

-1.36

-1.22

-1.44

-1.12

-1.06

-1.63

-1.76

-1.39

-1.63

-1.55

-1.73

-1.23

-1.52

-1.42

-1.65

-0.72

-1.25

-1.05

-1.35

-1.13

-1.05

-1.88

-1.44

-1.69

-1.64

-1.83

-1.25

-1.56

-1.49

-1.72

-1.24

-1.04

-1.34

-1.10

-1.01

-1.44

-1.51

-1.44

-1.48

-1.40

-1.51

-1.44

-1.51

-1.18

-1.43

-1.34

-1.48

-0.89

-0.84

-1.11

-1.08

-1.65

-1.60

-1.69

-1.41

-1.58

-1.54

-1.66

-1.01

-1.40

-1.28

-1.46

-1.12

-1.06

-1.52

-1.64

-1.33

-1.54

-1.45

-1.61

-0.95

-1.36

-1.20

-1.43

-0.70

-1.14

-1.09

-1.79

-1.32

-1.58

-1.52

-1.71

-0.80

-1.31

-1.14

-1.40

-1.12

-1.04

-1.42

-1.44

-1.39

-1.39

-1.31

-1.45

-1.40

-1.47

-0.99

-0.95

-1.04

-1.04

-1.56

-1.52

-1.58

-1.15

-1.44

-1.36

-1.49

-0.75

-0.69

-1.09

-1.05

-1.45

-1.53

-1.14

-1.43

-1.32

-1.48

-0.87

-0.82

-1.13

-1.10

-1.67

-0.97

-1.38

-1.25

-1.45

-1.12

-1.06

-1.48

-1.35

-1.41

-1.32

-1.07

-1.06

-0.73

-0.79

-1.45

-1.44

-1.46

-0.89

-0.85

-0.96

-0.96

-1.43

-1.44

-1.06

-1.04

-0.95

-0.98

-1.48

-0.85

-0.81

-1.00

-0.99

-1.12

-1.11

-1.01

-1.05

-1.10

-0.96

-1.00

-1.42

-1.38 -1.35

-0.57

-0.50

-0.51

-0.43

-0.66

-0.35

-0.26

-0.64

-0.57 -0.64

-0.46

-0.39

-0.60

-0.54
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

NaN

Notes: The matrix displays the average portfolio synergy as measured by the average
supermodularity of utility, ∆ijk in Equation (12). A higher value (closer to zero) means
stronger synergy between the two cars.
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Table 7: Counterfactual simulations
(1) (2) (3)

Exogenous policy variables
Targeted segment EV CV CV
Tax instrument Purchase Fuel Purchase
Effect on consumer price -20.0% +2.06% +1.62%

Welfare effects (annual, per household)
∆CO2 (kg) -7.266 -7.266 -7.266
∆Consumer surplus (NOK) 172.365 -215.051 -323.603
∆Taxes (NOK) -337.859 179.273 185.206
∆Local externalities (NOK) 27.437 -29.261 -40.443
Abatement cost (NOK per kg CO2) -26.552 -0.897 -13.481

Number of cars
Cars 3,769.3 -5,025.7 -6,713.4
– EV 11,068.3 229.1 303.7
– CV -7,299.0 -5,254.9 -7,017.1

Households by Portfolio Choice
No car -1,189.2 2,545.0 3,310.4
EV 2,772.5 103.5 143.2
EV,EV 117.6 3.9 5.3
CV -4,163.5 -167.7 -50.6
CV,CV -5,598.2 -2,602.5 -3,558.2
CV,EV 8,060.7 117.9 149.9

Driving (expected average percentage changes)
Total driving 0.253 -0.278 -0.376
EV driving 27.944 0.478 0.644
Diesel driving -0.313 -0.304 -0.542
Gasoline driving -0.341 -0.289 -0.228

Note: Evaluated on the 2017 cross-section of our dataset.

Table 8: Counterfactual Results With and Without Portfolio Effects
Full model (Γijk 6= 0) Restricted model (Γijk = 0)

Targeted segment EV CV CV EV CV CV
Tax instrument Purchase Fuel Purchase Purchase Fuel Purchase
Abatement cost per tonne -26,552 -897 -13,481 -16,856 -785 16,520
Number of cars (change) 3,769 -5,026 -6,713 3,636 -6,633 -8,818
Household with EV 2,773 104 143 4,562 185 254
Households with EV,CV 8,061 118 150 8,304 163 214

Note: Showing excerpts from Tables 7 and D.5.
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Orr, “Estimating complementarity with large choice sets: An application to merg-
ers,” Working Paper, 2021.

Figenbaum, Erik and Marika Kolbenstvedt, “Learning from Norwegian bat-
tery electric and plug-in hybrid vehicle users: Results from a survey of vehicle
owners,” TØI report 1492/2016, 2016.

Fridstrøm, Lasse, “Dagens og morgendagens bilavgifter,” TØI report 1708/2019,
2019. Norwegian only (English summary).

Gallagher, Kelly Sims and Erich Muehlegger, “Giving green to get green?
Incentives and consumer adoption of hybrid vehicle technology,” Journal of En-
vironmental Economics and Management, 2011, 61 (1), 1 – 15.

Gentzkow, Matthew, “Valuing new goods in a model with complementarity: On-
line newspapers,” American Economic Review, 2007, 97 (3), 713–744.

Gillingham, K., “Selection on Anticipated Driving and the Consumer Response
to Changing Gasoline Prices,” Working paper, 2012.

Gillingham, Kenneth and Anders Munk-Nielsen, “A tale of two tails: Com-
muting and the fuel price response in driving,” Journal of Urban Economics, 2019,
109, 27–40.

and James H. Stock, “The Cost of Reducing Greenhouse Gas Emissions,”
Journal of Economic Perspectives, November 2018, 32 (4), 53–72.

, Fedor Iskhakov, Anders Munk-Nielsen, John P Rust, and Bertel
Schjerning, “Equilibrium trade in automobiles,” Journal of Political Economy,
2022, 130 (10).

, , , John Rust, and Bertel Schjerning, “A Dynamic Model of Vehicle
Ownership, Type Choice, and Usage,” Working Paper, 2015.

44
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Online Appendix

A Data

This chapter describes the data and the dataset creation in more detail. Section
A.1 describes the main dataset: the household data including car ownership at the
household level. Section A.2 describes how we define car types in the model. Section
A.3 describes the driving data, and finally Section A.4 gives an overview of other
data sources such as fuel prices, purchase taxes and local external costs.

A.1 Car ownership and demographics

A.1.1 Car ownership

The central motor vehicle register in Norway is an annual data set that contains
information about all vehicles registered in the country, including a unique car iden-
tifier and unique individual identifiers of the owners that can be matched with other
administrative data sources. It also includes several attributes of the cars (further
described in Section A.2) as well as dates for important events such as first registra-
tion, de-registrations, re-registrations and potentially the scrap date.

First, we select a subset of the vehicles. We omit vehicles that run on alternative
fuel types (e.g. hydrogen and kerosene; these are less than 100 vehicles in total). We
also omit all vehicles that are not passenger cars with the exception of small vans,
such as motorcycles, scooters, tractors, buses, trucks, etc. We only keep vehicles
that are 25 years or younger, since the data on ownership and driving patterns for
older cars is too irregular.42

We omit all vehicles where the owner is a firm rather than an individual (slightly
less than 10 percent of the car fleet). Some of these cars are leasing vehicles used
by households, but as the household using the car is unobserved, it is not possible
to include these vehicles in the data. Leasing cars are typically sold second-hand
to households when they are 2-4 years old, and at this point they will reappear
in our sample. See Figure B.1 and related text for more information. Finally, the
motor vehicle register also contains information about type of driving each vehicle is

42For the older cars, the data on registrations and re-registrations tend to be noisy, meaning
that it is difficult to know whether a car is actually in use or not. For instance, several of the
older cars are labeled as de-registered or scrapped even though they have a subsequent EU control.
In addition, cars obtain veteran status when they are 30 years old, reducing the ownership tax
to almost zero. Thus, the owner has less incentive to de-register a car even if it is not in use.
Furthermore, owners of veteran cars are not required to undertake EU controls as often. This
means that we do not observe the mileage of these cars.
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registered for. We only keep vehicles registered for private transport (meaning that
taxis, emergency vehicles, embassy vehicles, military vehicles, hearses, etc. will be
omitted, even if the registered owner is an individual rather than a firm).

To create annual observations of car ownership at the household level we stock
sample the owners of the cars from the motor vehicle register at a given date at the
end of the year (December 31st), and allocate the cars to the corresponding house-
hold. Stock sampling has the advantage that we do not have to make assumptions
about how to allocate a car between individuals if the car changed owner within a
given year.

When defining car ownership, we only consider the two youngest cars in three
(or more) vehicle households. Thus, we assume that the third (and fourth, etc.)
vehicle is irrelevant for the household’s decision of the two-car portfolio. Three-car
ownership is at most 0.9% and often likely to be due to a transition from one two-car
portfolio to another. Regardless, this simplification is necessary for the tractability
of our model.

A.1.2 Socio-economic and location data

Our final data set is defined at the household×year level, where car ownership at the
household level is obtained by linking individuals with the same unique household
identifier. This is further linked to other socio-economic information from various
Norwegian registers, such as the national population register and tax records. In par-
ticular, we define the following variables: “couple” is a dummy variable for whether
the household consists of one or two adult members; “age” is the average age of the
two spuses; and “income” is defined as the sum of labor and capital income net of
taxes and transfers for both spouses.

We observe the geographical location of the households’ residence at the “basic
statistical unit” level (henceforth referred to as “neighborhood”) each year. With
more than 14,000 neighborhoods in Norway, and an average population of less than
200 households, this is the most detailed geographical classification available. These
neighborhoods are typically small in densely populated areas and significantly larger
in rural areas.

By linking employers to employees, we also know the neighborhood of individuals’
workplaces. For individuals with several employers within a given year, we choose
the workplace associated with the highest labor income, given that the neighborhood
of the workplace is non-missing.

This information allows us to associate each individual with a work route. We
use the road network Elveg, a publicly available data set maintained by The Nor-
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wegian Public Roads Administration (NPRA) that includes all drivable roads that
are either longer than 50 meters or part of a network.43 This allows us to calculate
the fastest route along the road network between the road links that are closest
to the centroids of each neighborhood; i.e. the route that minimizes driving time
according to the speed limit on each road link. We have also obtained information
on toll gates in Norway from the NPRA, including coordinates and annual rates.
This information is added to the appropriate links in the road network, allowing us
to calculate associated toll payments with each work route.44 For toll gates with
time-differentiated charges we use the price during rush hours, as we are looking at
tolls associated with the work trips.

We use the information on routes between neighborhoods to create variables for
work distance and toll payments. Work distance is defined as the average of the
spouses’ work distances, where the work distance is set to zero for individuals that
are unemployed. In cases where one of the spouse’s workplace is lacking information
on neighborhood, we use the other spouse’s work distance instead. If all working
individuals in a household have missing information on the workplace neighborhood,
the work distance variable is set to missing. The variable for toll payments is defined
similarly, but we use the sum of spouses’ tolls instead of the average. We then create
a measure of potential annual toll payments, assuming that spouses drive to work
220 days each year.45

We also use the information on neighborhoods to create variables for “living in
a city” as well as “working in a city”. The first either takes the value zero or one,
while the latter will take the value 0.5 if the household is a couple and only one of
the spouses work in a city. In this context, “city” is defined as within the boundaries
of Oslo, Bergen, Trondheim or Stavanger, the four largest cities in Norway.

The “average toll payment” variable is the cost associated with a one-way work
trip. We observe that the use of tolls in Norway is significantly expanded over the
years for which we have data; the share of households exposed to tolls on their
work trip has increased from 8.5 percent in 2005 to almost 20 percent in 2017.

43See e.g. https://kartverket.no/globalassets/standard/
horinger-standarder/vegnett-5.0-elveg-2.0/produktspesifikasjon-elveg-2_
0-hoeringsutgave-oktober-2018.pdf (Norwegian only).

44We use a static road network from 2015. This means that all variation in work distances within
households over time will come from either households moving, workplaces moving or individuals
changing jobs. The cost of passing toll gates however vary by year according to the rates.

45As we do not know the share of individuals that drive to work (or alternatively the share of
days each year that individuals drive to work), this will be estimated in the model. Thus, the
number of days chosen has no impact on the solution of the model. If we were to specify that
individuals drove to work 110 days each year instead, it would simply result in the “toll” parameter
being twice as large.
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Furthermore, the average one-way cost for the exposed households has increased
from about 16 NOK in 2005 to 28 NOK in 2017, measured in 2015-NOK.46 This is
partly due to a general increase in toll levels, and partly due to the introduction of
rush hour charges in toll cordons of several major cities, making driving into the city
center during congested hours more expensive. Taken together, this means that the
average household’s work trip exposure to tolls increased from 1.37 NOK in 2005 to
5.63 NOK in 2017 (one way, measured in 2015 kroners). It should be noted that
part of the increase in toll levels between 2010 and 2017 is offset by the expansion
of electric vehicles, and the fact that they can drive through toll gates at zero cost.

A.1.3 Sample selection

We impose three main sample selection criteria.
Criterion 1: Some firms have missing information on neighborhoods, meaning

that we are not able to create work distance and toll measures for the individuals
working there. These households are removed.

Criterion 2: We remove households where the average one-way work distance
is above 150 kilometers. These individuals are likely to either work from home, or
commute by other modes of transport (several individuals are for instance living
in one of the major cities in Norway and working in another about 500 kilometers
away; these individuals are more likely to commute by plane and less often than
every day).47

Criterion 3: As we use the natural logarithm of income as an explanatory
variable in the model, we remove all households where the net income is negative.

Table A.1 shows how the sample gradually drops as these selection criteria are
imposed. We are left with almost 26.5 million household-year observations, which
is 89% of the raw data.

46If we assume that both spouses drive to work 220 days each year, this corresponds to 7,000
NOK/year and 12,500 NOK/year respectively.

47Extremely long work distances can also be due to errors in the data. First, the location of the
firm may be wrong. This can for instance happen if the firm has moved but the change has not
been recorded in the registers yet. Second, if the household has recently moved there may be a
discrepancy in the data, since residential locations are reported at a given date while employer-
employee relationships are recorded throughout the year. Third, some individuals may have moved
but not updated their residential location yet. It is for instance common for young people to move
to other cities to study while still being registered with their parent(s) address.
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Table A.1: Car ownership sample selection

Raw data Criterion 1 Criterion 2 Criterion 3

N 29,731,353 27,355,078 26,634,996 26,470,192
Share 100% 92.0% 89.6% 89.0%

Note: Criterion 1: work distance observed. Criterion 2: Work distance not greater than
150 km. Criterion 3: Non-negative income.

A.2 Car Types and Attributes

The central motor vehicle register in Norway contains information about all vehicles
registered in the country, including first registration date, make, model and car
attributes such as fuel type, fuel efficiency, engine effect, weight, etc. The vast
amount of detail means that we observe several hundreds of thousands of unique car
types (i.e. unique bundles of car attributes).

New-car prices: The motor vehicle register does not contain car prices. We
have obtained MSRPs (“Manufacturer’s Suggested Retail Prices”) for November
each year from OFV (“Opplysningsr̊adet for Vegtrafikk”) at a similarly detailed
level.48 Prices are merged to the motor vehicle register using a fuzzy matching
procedure that compares car attributes as well as strings for make and model names
across the two data sets. Prices are then added manually for the most common
vehicles where the fuzzy matching fails. This procedure found a matching price for
about 96 percent of all cars. As the number of electric vehicle models available
between 2011 and 2017 was relatively low, we went through all the models manually
to ensure that all electric vehicle prices are correct. We have also added “range”
for electric vehicles manually, as this attribute is not included in the motor vehicle
register.49

Used-car prices: Unfortunately, we do not have any information on transaction
prices for used cars. Therefore we use a depreciated value of the new car price, where
the depreciation rates are based on The Norwegian Tax Authority’s evaluation of
used cars.50 These rates are used to calculate the registration tax for an imported
used car. This rate is on average 12.5% annually. This is very close to the average
rates observed by Gillingham et al. (2015) in suggested used-car prices from the
Danish Automobile Dealer Association, and those rates have very low dispersion

48By the contract with OFV, we are not permitted to share this data. However, the
MSRPs each year in PDF format can be found here: https://www.skatteetaten.no/en/rates/
car-prices---list-prices-as-new/ Note that the MSRPs include purchase taxes.

49Range, estimated for Norwegian conditions for most EV models, can be found here: https:
//elbil.no/om-elbil/elbiler-idag/.

50See https://www.skatteetaten.no/en/rates/car-rates---deduction-for-use-table/.
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Table A.2: Car attributes by car type, 2017

Car type Fuel type Age Weight Effect Range CO2 Ownership cost Driving cost
1: Small, new Gasoline 0.52 1.27 99.9 - 114.3 138,499 0.684
2: Small, new Diesel 0.56 1.48 105.4 - 126.7 178,809 0.619
3: Large, new Gasoline 0.51 1.80 144.3 - 81.7 236,803 0.489
4: Large, new Diesel 0.53 1.84 140.1 - 143.1 273,454 0.702
5: Small, 1-4 years Gasoline 3.29 1.12 78.7 - 115.5 82,327 0.683
6: Small, 1-4 years Diesel 3.50 1.40 90.0 - 122.7 106,544 0.595
7: Large, 1-4 years Gasoline 2.82 1.51 115.9 - 114.0 132,223 0.682
8: Large, 1-4 years Diesel 3.28 1.75 120.6 - 156.7 166,340 0.763
9: Small, 5-11 years Gasoline 8.51 1.05 65.8 - 137.4 62,780 0.802
10: Small, 5-11 years Diesel 8.32 1.37 79.4 - 137.3 74,863 0.654
11: Large, 5-11 years Gasoline 8.69 1.41 105.2 - 170.0 83,933 0.991
12: Large, 5-11 years Diesel 8.56 1.76 112.2 - 188.0 102,529 0.903
13: Small, 12+ years Gasoline 17.06 1.09 68.3 - 171.0 55,120 0.977
14: Small, 12+ years Diesel 15.00 1.42 83.1 - 166.7 63,814 0.790
15: Large, 12+ years Gasoline 16.75 1.45 109.6 - 221.0 62,954 1.271
16: Large, 12+ years Diesel 16.03 1.90 98.3 - 234.2 70,616 1.126
17: Small EV, new Electric 0.51 1.46 96.3 268.1 0.0 118,818 0.155
18: Small EV, used Electric 3.02 1.40 84.5 213.7 0.0 80,625 0.155
19: Large EV, new Electric 0.30 2.26 301.2 494.4 0.0 296,614 0.183
20: Large EV, used Electric 2.89 2.13 273.3 450.7 0.0 162,841 0.183

Notes: Weight is in tonnes, engine effect is in kW, range in km, CO2 emissions in g/km,
and driving cost in 2015 NOK/km (based on fuel efficiency and fuel price). Ownership
costs are computed for three years of ownership and discounted (at annual rate 0.95),
comprising “rental cost” (purchase price minus depreciated resale value), annual taxes,
repair and maintenance costs.

across car types.
Car attributes: The attributes from the motor vehicle register we use in the

model include “engine effect”, measured in 100 kW; “weight”, measured in tonnes;
“fuel efficiency”, measured in liter/kWh per kilometer; and “car age”, measured
in years and calculated as the time interval from the first registration date of the
vehicle until the date where we stock sample car ownership (December 31st each
year). As “weight” tends to work as a proxy for car quality in discrete choice
models, and electric vehicles are heavier due to the battery, we subtract the weight
of the battery for electric vehicles (30% of the weight).

Table A.2 shows the attributes of each of the 20 car types for 2017. Note that
the characteristics vary over time depending on which cars falls into the categories
in each year. Furthermore, the EV only started becoming available from 2011 and
onwards.
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A.3 The Driving Dataset

A.3.1 Periodic vehicle inspections

Car owners in Norway are required to conduct a periodic vehicle inspection before
four years have passed since the date of the first registration. For subsequent vehicle
inspections, not more than two years can have passed from the previous inspection.
For cars that are second-hand imported and more than three years old, the dead-
line for the first inspection is within one year since the car was first registered in
Norway.51 It is illegal to drive in a car that has not been to the periodic vehicle
inspection within the required deadline: if the driver of such a car is stopped in a
police control, the car’s license plates are removed.

The control has two purposes: first, to check that the car is safe to use. Second,
to check that noise and local pollutants are not above the allowed threshold values.
If the car is not approved, the owner is responsible for conducting required repairs
and do a second inspection within two months. If the car does not pass a new
inspection within the two months, it is illegal to use.

For our purpose, the most important aspect of the periodic inspections is that
odometer readings are recorded in a register that is linked to the motor vehicle
register through a unique car identifier. This means that we are able to merge car
and owner characteristics to each odometer reading.

A.3.2 Driving periods

We use odometer readings to create a separate data set containing car specific driving
periods. The length of a driving period is the time between two subsequent periodic
inspections (≈2 years), and the mileage during a driving period is the difference
between odometer readings. For each car’s first driving period, the length will be
the time interval between the first registration and the first periodic inspection of the
car (≈4 years), and the mileage will be the odometer reading at the first inspection.

We only keep driving periods from the cars in our main sample (see Section A.1.1)
where the car is owned by households from our main sample (see Section A.1.3) for
at least a part of the driving period. This leaves about 12.6 million driving periods.

We then drop all driving periods with start dates earlier than January 1st 2005
(≈2.1 million observations) for two reasons. First, our main data set on car owner-
ship starts in 2005. Second, odometer readings were not recorded in Norway prior

51The time intervals are different for veteran cars, passenger vehicles not used for private trans-
port such as taxis etc., as well as vehicles with a total weight above 7.5 tonnes. However, these
intervals apply to all vehicles in our data set.
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to 2005, meaning that the first driving period for the 2005 car fleet will span all
years from the car is first registered in Norway.

The driving data is slightly more noisy than the car ownership data and includes
some odometer readings that are obviously wrong, resulting in some cars being
reported as driven tens of thousands of kilometers each day. To remove these outliers,
we drop all driving periods where the first difference of odometer readings is either
negative or above 200 kilometers per day. This removes about 80,000 driving periods
(≈0.8 percent), and leaves a sample of about 10.5 million observations.

A.3.3 Driving sub-periods and sample selection

Definition (driving sub-period): We define driving sub-periods as the part of a
driving period where (a) the household that owns the car do not change and
(b) the ownership status for other vehicles owned by the same household do
not change.

Sub-periods are thus characterized by unique owners with unique car portfolios.
As in Section A.1, the car portfolio for households owning more than two cars will
consist of the two cars of the most recent vintage. The driving periods are split in
21.8 million unique sub-periods, corresponding to 2.1 sub-periods per driving period
in average.

The household data described in section A.1.2 is annual, while sub-periods can
be of arbitrary length, from a single day to multiple years. Thus, we use weighted
averages of the annual household data, where the weights correspond to the amount
of the driving sub-period that falls within each year. For example, if a sub-period
spans from the middle of 2010 to the middle of 2012, the household specific demo-
graphic data for 2011 is weighted by 0.5, while the 2010 and 2012 values are weighted
by 0.25 each.

While the car attributes described in Section A.2 needs to be grouped by car types
as they will be used in a discrete choice model, the observed driving is conditional on
car ownership. This means that we can use the actual car attributes in the driving
sub-likelihood rather than the car type specific averages to preserve more of the
heterogeneity in the data. All car attributes except “age” are time-invariant. For
the age of the car, we use the age at the middle point of the driving sub-period.

Finally, we add the fuel/energy price of the type that corresponds to the car
(diesel, gasoline or electricity, see Section A.4). Diesel and gasoline prices are ob-
served at a monthly level, while electricity prices are observed quarterly. As with
the household data we use the weighed average of the prices that are contained in
the driving sub-period. Note that the randomness of the timing of periodic vehicle
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inspections will introduce random variation in the average fuel price a household is
faced with during a driving sub-period.

Next, we impose as set of sample selection criteria that reduce the number of
driving periods from 10,532,123 to 6,088,227, or by about 42 percent. In the follow-
ing sections, the sample selection criteria will be described more in detail.

Criterion 1: As we are using actual car attributes rather than car type aver-
ages, we require that all car attributes are observed in the motor vehicle register.
Moreover, for sub-periods with two-car portfolios, we require that the attributes of
the additional car the household owns must be observed. The most problematic
attribute is “fuel efficiency”, which is missing for a significant share of the older cars
in first years of the data.

Criterion 2: We remove driving periods where the length is not within the
interval [2 years minus 150 days, 4 years plus 150 days] as we consider these to be
observations of an unnatural length.

Criterion 3: We remove driving periods where less than 70 percent of the
driving period is covered by valid sub-periods. This may happen because the owner
of the car is unobserved for a significant part of the driving period, or excluded
from our sample. It is for instance common for company-owned cars to be bought
second-hand by households.

For each driving period, we calculate driving in kilometers per day. For each
sub-period we calculate the percent of the total permissible days of driving that this
sub-period makes up, so that the sum over weights across sub-periods belonging to
the same driving period is 100%.

Table A.3: Driving sub-periods, sample selection
Raw data Criterion 1 Criterion2 Criterion 3

Sub-periods 21,763,490 15,932,834 14,905,140 13,403,807
Share of raw data 100% 73.2% 68.5% 61.6%
Avg. km/day 36.5 38.4 38.1 37.3
Note: Criterion 1: period startes before 1 Jan 2005 or car attributes missing. Criterion
2: unnatural inspection timing. Criterion 3: more than 70% of the overall driving period
has been dropped to preceding criteria or is unaccounted for.

Table A.3 shows how the number of valid sub-periods is reduced as the three
sample selection criteria are imposed. The last rows contain all vehicle types, while
the rows above separates between gasoline, diesel and electric vehicle sub-periods.
For each of these groups, three statistics are displayed: the number of sub-periods,
the share they constitute of the raw data as well as the average kilometers driven
per day within each group. As the first periodic inspection is conducted when the
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car is approximately four years old, we have a relatively small sample of electric
vehicle observations.52

A.4 Other data sources

A.4.1 Purchase taxes

Purchase taxes apply to new vehicles with diesel or gasoline driven internal combus-
tion engines (including hybrids), and consist of VAT (25 percent) as well as a one-off
registration tax. The latter has several components that depend on the attributes of
the car: weight, engine effect, cylinder volume, CO2 emissions and NOx emissions.
The registration tax is a piece-wise linear function of these attributes.

Using the annual tax rates set by the government and car specific attribute values
from the central motor vehicle register, we can calculate the registration tax for each
car. Using the MSRPs, we also calculate the VAT.

There has been significant changes in which attributes that are included in the
registration tax, as well as changes in the attribute specific rates and location of kinks
in our sample period 2005-2017. Changes are politically motivated by wanting to
increase the weight of the CO2 component relative to the other components, and this
provides price variation over time as well as across vehicles with different attributes.
Tax rates as a function of a car’s attributes are displayed in Figure A.1.

In 2005, the registration tax included components for weight, engine effect and
cylinder volume. The cylinder volume component was replaced by a CO2 component
in 2007. In 2009, the CO2 component was changed to a feebate component, where
rebates were given to cars with type approved CO2 emissions of less than 120 grams
per kilometer, while rates for emissions above this threshold increased. The NOx

component was introduced in 2010, but is small in magnitude compared to the
other components. The CO2 component has been gradually increased each year,
with comparable reductions in the engine effect component, and in 2017 the latter
was completely phased out.

For hybrid vehicles, some additional clauses apply. First, the engine effect com-
ponent is only calculated based on the internal combustion engine. Second, the
weight component is calculated without the weight of the battery. The deduction
for battery weight was set to 10 percent of the vehicle weight before 2010. From

52The odometer readings data ends on December 31st 2017, meaning that four year old vehicles
would be bought new at December 31st, 2013. As the sale of EVs in Norway has increased
exponentially, the majority of the cars are of a younger vintage than this. We do utilize odometer
readings for some cars that were registered later, but this is provided that the owner has conducted
a periodic vehicle inspection earlier than she is required to.

57



Figure A.1: Components of the registration tax, selected years.
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Notes: All tax components are displayed in 2015-kroners. Technical attributes are dis-
played on the same scale, the units are displayed in the legend. The registration tax for
a new vehicle is the sum of all components.

2010, it was increased to 26 percent for plugin hybrids. In 2017, it was reduced from
10 percent to 5 percent for non-plugin hybrids.

On average, taxes constitute almost 50 percent of the final consumer price for new
diesel and gasoline cars. The progressive nature of the registration tax means that
large cars with high fuel consumption are taxed more heavily. The change over time
in the CO2 component relative to engine effect and cylinder volume has favored diesel
vehicles over gasoline vehicles. The feebate aspect of the CO2 component has also
reduced the registration tax for most hybrids and some small diesel vehicles to zero
or close to zero – this will happen in cases where the CO2 rebate completely offsets
the other components. New car prices and tax components for new small/large
diesel/gasoline vehicles are displayed in Figure A.2. The decline in the registration
tax for large gasoline cars partly reflects that this group has an increasing share of
hybrids.

Finally, we want to show that although price endogeneity is a common problem
when working with disaggregate data, it is less problematic in our setting when
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Figure A.2: Prices and tax components for new ICEV car types over time.
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considering aggregate car types. In Table A.4, new car prices excluding taxes and
the registration tax for ICEVs are regressed on the relevant car attributes included
in the structural model (EVs are excluded here, as their tax rate is zero). The
first columns display results for new cars on the car model level, while the last
columns display results for the four groups of new ICEVs included in the model. All
regressions are non-weighted by sales and include all available new ICEVs during the
period 2005-2017. The first columns show, as expected, that a large portion of price
variation is unaccounted for in the disaggregate. The latter columns however show
that while weight, engine effect and the diesel dummy explain 96% of the variation
in producer prices, they only explain 71% of the variation in the registration tax.
This has two major implications: First, by aggregating cars into car types, virtually
all unobserved variation in producer prices are removed. Second, even though the
registration tax is a function of the attributes of the vehicle there is enough variation
stemming from changes over time in the tax rates (see Figure A.1) to provide residual
price variation for aggregate car models.53

53The root mean squared error indicates that conditional on weight, engine effect and fuel type,
the remaining variation in kroners is three times larger for the registration tax than for the price
excluding taxes.
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Table A.4: Regressions of Car Price or Tax on Characteristics
Disaggregate car models Aggregate car models

Price ex tax Registration tax Price ex tax Registration tax
Weight (tonnes) -24.45∗∗∗ (2.138) 231.80∗∗∗ (1.571) 148.70∗∗∗ (24.97) 391.40∗∗∗ (72.51)
Effect (100 kw) 239.04∗∗∗ (1.334) 203.34∗∗∗ (0.981) 98.13∗∗∗ (25.47) -211.52∗∗∗ (73.95)
Diesel (dummy) 41.61∗∗∗ (1.812) -14.84∗∗∗ (1.332) -6.214 (5.741) -25.003 (16.67)
Constant -29.28∗∗∗ (2.838) -377.04∗∗∗ (2.086) -100.20∗∗∗ (12.78) -177.38∗∗∗ (28.05)
Observations 23,777 23,777 52 52
Mean of y 255.10 263.16 200.08 127.64
Adjusted R2 0.661 0.863 0.956 0.709
RMSE 105.74 77.73 11.43 33.20

Notes: Standard errors in parantheses. Outcome variables are measured in 1000 NOK
(2015-kroners). Observations are new ICEV car types available in the period 2005-
2017. Left: Before aggregation. Right: after aggregation (car types 1-4; see Section A.2).
Regressions are not weighted by sales, explaining why the average values of the dependent
variables does not match when comparing the disaggregate car models to the aggregate
car models.

A.4.2 Fuel and energy prices

There are three main tax components for diesel and gasoline in Norway. First, a
CO2 component. Second, a road use component, with the purpose of capturing all
other externalities than CO2, such as noise and local pollutants, wear and tear of
roads, congestion and accidents.54 These two components are diesel- and gasoline
specific flat rates that are adjusted annually.

We do not have access to fuel prices exhibiting geographical variation. However,
the fact that we observe fuel prices that vary by month, and the fact that the
timing of driving periods vary almost arbitrarily means that we have individual
level variation in fuel price exposure. Note also that variation in fuel efficiency
across car models means that the driving cost per kilometer will be different for
different cars even within the same time period.

Figure A.3 displays how the CPI-adjusted gasoline and diesel prices as well as
the different tax components have evolved over the sample period in 2015-kroners.
The tax components for gasoline has been higher than the tax components for diesel
for all months in the data set, resulting in a gasoline price that is higher per liter.

In addition to the 25 percent VAT, there is a flat tax rate on electricity as
well. This is meant to incentivize households to be more energy efficient, but is
significantly lower than the rates on diesel and gasoline measured as percent of the
final consumer price. For electricity we only have access to prices on quarterly

54According to the Government; see e.g. https://www.regjeringen.no/no/tema/okonomi-og-
budsjett/skatter-og-avgifter/veibruksavgift-pa-drivstoff/id2603482/ (Norwegian only).
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Figure A.3: Diesel and gasoline price components
Panel A: Gasoline price
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Panel B: Diesel price
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Figure A.4: Electricity and fuel prices
Panel A: Electricity price
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intervals, displayed in the left panel of Figure A.4. The right panel contrasts this to
the final diesel and gasoline price during the same period.

National diesel, gasoline and electricity prices are publicly available through
Statistics Norway, and can be accessed at their website.

A.4.3 Local external costs of driving

To predict the local externalities of driving, we use marginal damage costs quantified
by The Institute of Transport Economics in Norway in 2019 for Norwegian condi-
tions. Damage costs are differentiated by vehicle type and the population density
in the area where driving occurs, and reported separately for CO2 emissions, lo-
cal emissions, noise, congestion, accidents and wear-and-tear of road infrastructure.
We use all components except CO2 emissions, and the resulting external costs per
kilometer are reported in Table A.5.

61



Table A.5: Local externalities of driving, 2015 NOK per kilometer
Car type Area Local Noise Congestion Accident Infra- Total

pollutants structure
CV Large urban area 0.396 0.297 1.332 0.108 0.027 2.160
CV Other 0.041 0.174 0.112 0.108 0.027 0.461
EV Large urban area 0.206 0.297 1.332 0.108 0.027 1.980
EV Other 0.016 0.174 0.112 0.108 0.027 0.437

Notes: Local externalities are obtained from (Rødseth et al., 2019) and converted to 2015-
kroners. We assume that households located in Oslo, Bergen, Trondheim or Stavanger live
in large urban areas (25% of households). For the “other” category, we assume that 59% of
the remaining population live in areas with 15,000 inhabitants or more, while the rest of the
population live in rural areas. This is in accordance with Statistics Norway’s numbers on
population density.

B Additional descriptives

Section B.1 presents additional descriptives in the form of various figures and lin-
ear regressions. Section B.2 presents linear regressions to illustrate the conditional
relationship between toll payments and EV ownership.

B.1 Car ownership and driving

Figure B.1: New car purchases by year, propulsion system and owner type.
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Figure B.1 is based on aggregate new car sales records, and illustrates two things.
First, the increasing share of hybrid vehicles over time. For the car types used in the
structural model, hybrid vehicles are included in the diesel and gasoline segments.
Second, the increase in the number of new cars that are bought by companies.
Company-owned cars are typically sold second-hand to households when they are
2-4 years old, implying that even though the share of new cars bought by companies
is high, the share of the car fleet that is owned by companies is still low (less than
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Figure B.2: Car ownership by income and work distance deciles, 2017
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Notes: The first work distance group contains all households with zero work distance
(40%). Remaining groups are equally large. The y-axis indicates the average of different
variables within each bin. The top row displays the share of households owning 0, 1
and 2 cars. The bottom row displays average number of cars of by fuel type owned by
households within each bin.

ten percent in 2017).
Figures B.2 and B.3 show raw means of car ownership (extensive margin) and

driving (intensive margin) respectively, by deciles of income (left) and work distance
(right), while Figure B.4 illustrates the distribution of driving across all households
and years.

Table B.1 shows the market shares for each of the 231 car portfolios in 2017.
Table B.2 illustrates what the market shares of two-car portfolios would have been
under independence. Finally, Tables B.3 and B.4 present results from linear regres-
sions on driving and car ownership respectively, to illustrate conditional correlations
in the data.
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Figure B.3: Driving by income and work distance deciles.
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Note: The first work distance group contains all households with zero work distance
(40%). Remaining groups are equally large. The y-axis indicates kilometers per day,
household and car. The top row splits driving between 1 and 2 car households. The
bottom row displays driving by fuel type. Driving is driving period weighted averages
within each group, where the weights correspond to the number of days of the driving
period that the car is owned by each household. Note that some of the bins in the
figure will have few observations: there are for instance few electric vehicles and two-car
households in the lower income and work distance groups.

64



Figure B.4: Distributions of driving.
A: Driving by number of cars owned
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B: Driving by car type, new cars
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Notes: Both panels show driving per car per day. The left panel displays a histogram
of driving for one- and two-car households. The right panel shows kernel densities of
driving per day by fuel type. As driving decreases with car age, the right panel only
includes driving periods between the first registration and the first safety inspection (i.e.
≈0-4 year old cars). Both panels are weighted by the length of the driving period.

Table B.1: Portfolio Market Shares in 2017

No car

Small g
asoline, new

small d
iesel, n

ew

Large gasoline, new

Large diesel, n
ew

Small g
asoline, 1-4 years

small d
iesel, 1

-4 years

Large gasoline, 1-4 years

Large diesel, 1
-4 years

Small g
asoline, 5-11 years

small d
iesel, 5

-11 years

Large gasoline, 5-11 years

Large diesel, 5
-11 years

Small g
asoline, 12-25 years

small d
iesel, 1

2-25 years

Large gasoline, 12-25 years

Large diesel, 1
2-25 years

Small e
lectric

, new

small e
lectric

, used

Large electric
, new

Large electric
, used

No car

Small gasoline, new

small diesel, new

Large gasoline, new

Large diesel, new

Small gasoline, 1-4 years

small diesel, 1-4 years

Large gasoline, 1-4 years

Large diesel, 1-4 years

Small gasoline, 5-11 years

small diesel, 5-11 years

Large gasoline, 5-11 years

Large diesel, 5-11 years

Small gasoline, 12-25 years

small diesel, 12-25 years

Large gasoline, 12-25 years

Large diesel, 12-25 years

Small electric, new

small electric, used

Large electric, new

Large electric, used

0.47

0.15

0.24

0.09

2.74

2.20

2.12

1.71

2.94

7.82

2.79

4.52

5.17

2.40

3.86

1.09

0.19

0.71

0.07

0.13

0.01

0.00

0.00

0.00

0.05

0.04

0.03

0.03

0.04

0.09

0.03

0.04

0.05

0.02

0.03

0.01

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.02

0.04

0.01

0.02

0.01

0.07

0.01

0.03

0.01

0.01

0.01

0.01

0.00

0.01

0.00

0.00

0.01

0.00

0.03

0.03

0.04

0.04

0.03

0.07

0.03

0.06

0.03

0.01

0.03

0.01

0.01

0.04

0.00

0.00

0.00

0.01

0.02

0.01

0.03

0.01

0.04

0.01

0.03

0.01

0.01

0.01

0.01

0.00

0.02

0.00

0.00

0.08

0.14

0.13

0.16

0.13

0.35

0.11

0.25

0.21

0.07

0.13

0.05

0.02

0.06

0.01

0.01

0.12

0.07

0.19

0.17

0.64

0.09

0.38

0.25

0.18

0.17

0.10

0.05

0.16

0.01

0.01

0.06

0.10

0.16

0.31

0.13

0.21

0.23

0.09

0.18

0.06

0.04

0.16

0.01

0.01

0.10

0.18

0.60

0.11

0.41

0.22

0.17

0.19

0.12

0.07

0.22

0.01

0.01

0.09

0.43

0.17

0.42

0.18

0.09

0.17

0.07

0.02

0.05

0.01

0.01

1.19

0.36

1.64

0.88

0.69

0.70

0.43

0.12

0.45

0.02

0.04

0.13

0.34

0.31

0.12

0.29

0.10

0.03

0.14

0.01

0.02

0.77

0.76

0.69

0.78

0.51

0.13

0.53

0.03

0.04

0.31

0.34

0.55

0.25

0.02

0.07

0.01

0.01

0.26

0.37

0.30

0.02

0.09

0.01

0.01

0.47

0.33

0.03

0.14

0.01

0.02

0.15

0.02

0.08

0.00

0.01

0.00

0.03

0.01

0.01

0.04

0.05

0.05

0.00

0.01 0.01

30.40

5
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NaN

Notes: Each cell shows the share of households in 2017 that own the corresponding car
portfolio. This uses the Ownership Dataset.
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Table B.2: Predicted Portfolio Market Shares Under Independence

Small g
asoline, new

small d
iesel, n

ew

Large gasoline, new

Large diesel, n
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Small g
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2-25 years

Large gasoline, 12-25 years

Large diesel, 1
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lectric

, used

Large electric
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Large electric
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Small gasoline, new
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0.01
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0.00
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0.00

0.00

0.00
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0.02

0.01

0.02
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0.04
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0.03
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0.01

0.00

0.00
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0.01

0.01
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0.01
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0.01
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Notes: Each cell shows the predicted probability of the bundle, (j, k), denoted ŝjk, com-
puted as ŝjj = s2

j , where sj|1 ≡
sj∑

k∈J
sk

is the observed frequency of one-car purchase,

and ŝjk = 2sjsk for j 6= k (since we do not distinguish between (j, k) and (k, j)).
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Table B.3: Linear regression coefficients, driving.
Dependent variable: (1) (2) (3) (4)
Twocar dummy -0.0111 0.173∗∗∗ 0.188∗∗∗ 5.545∗∗∗

(0.0146) (0.0141) (0.0141) (0.0389)
Household income (log) 1.782∗∗∗ -0.604∗∗∗ -0.594∗∗∗ 0.224∗∗∗

(0.0181) (0.0171) (0.0171) (0.0174)
Work distance 0.143∗∗∗ 0.160∗∗∗ 0.161∗∗∗ 0.161∗∗∗

(0.000432) (0.000469) (0.000469) (0.000468)
Diesel dummy 4.450∗∗∗ 3.334∗∗∗ 3.334∗∗∗

(0.0294) (0.0208) (0.0207)
EV dummy -0.153 -5.633∗∗∗ -5.438∗∗∗

(0.153) (0.178) (0.178)
Toll (NOK per worktrip) -0.0446∗∗∗ -0.0447∗∗∗ -0.0446∗∗∗

(0.000382) (0.000382) (0.000380)
Toll times EV dummy 0.0261∗∗∗ 0.0261∗∗∗ 0.0251∗∗∗

(0.00335) (0.00335) (0.00334)
Price per km 1.535∗∗∗

(0.0533)
Fuel/energy price -0.328∗∗∗ -0.352∗∗∗

(0.00734) (0.00730)
Car age difference -0.234∗∗∗

(0.00134)
Engine effect difference 0.0344∗∗∗

(0.000357)
Weight difference 0.00197∗∗∗

(0.0000345)
Constant 21.43∗∗∗ 41.64∗∗∗ 46.33∗∗∗ 34.96∗∗∗

(0.234) (0.223) (0.242) (0.247)

Demographic controls X X X X
Car controls X X X
Mean depvar: 35.61 35.61 35.61 35.61
Observations: 13,403,807 13,403,807 13,403,807 13,403,807
Sum of weights: 6,088,227 6,088,227 6,088,227 6,088,227

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.
Notes: Dependent variable is driving per car per day. Observations are sub-periods
(unique combinations of driving periods, households and car portfolios). Regressions
are weighted with the share of the corresponding driving period a sub-period constitutes.
Prices are measured in 2015-kroners. The first column regresses driving on demographics.
The second column includes controls for car attributes and price per kilometer (fuel
price over fuel efficiency). The third column controls for fuel price instead of price per
kilometer. Fuel price is 1 {gasoline}×gasoline price+1 {diesel}×diesel price+1 {EV}×
electricity price (in liters/kWh). Additional demographic controls include “age”, “couple”
and “city”. Additional car controls include “car age”, “engine effect” and “car weight”.
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Table B.4: Linear regression coefficients, car ownership 2017

Dependent variable: Gasoline Diesel EV Cars
Household income (log) 0.0449∗∗∗ 0.0792∗∗∗ 0.0147∗∗∗ 0.139∗∗∗

(0.000293) (0.000466) (0.000125) (0.000694)
Work distance -0.0000573∗∗ 0.00635∗∗∗ -0.000230∗∗∗ 0.00606∗∗∗

(0.0000291) (0.0000360) (0.0000138) (0.0000338)
Age 0.00281∗∗∗ -0.00215∗∗∗ -0.000627∗∗∗ 0.0000287

(0.0000194) (0.0000195) (0.00000595) (0.0000227)
Couple dummy 0.187∗∗∗ 0.419∗∗∗ 0.0363∗∗∗ 0.641∗∗∗

(0.000853) (0.000940) (0.000266) (0.00109)
City dummy -0.0516∗∗∗ -0.226∗∗∗ 0.00643∗∗∗ -0.272∗∗∗

(0.000881) (0.000869) (0.000380) (0.00101)
Toll (NOK per worktrip) 0.000211∗∗∗ -0.00217∗∗∗ 0.00163∗∗∗ -0.000333∗∗∗

(0.0000225) (0.0000250) (0.0000147) (0.0000234)
Constant -0.406∗∗∗ -0.590∗∗∗ -0.143∗∗∗ -1.138∗∗∗

(0.00340) (0.00549) (0.00143) (0.00832)

Mean depvar: 0.4085 0.5224 0.0470 0.9779
Observations: 2,169,769 2,169,769 2,169,769 2,169,769

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.
Notes: Dependent variable is number of cars owned per household, by propulsion system
(columns 1-3) and in total (column 4). Income and toll payments are measured in 2015-
kroners.
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B.2 EV ownership and toll payments

Figure B.5 displays the geographical variation in EV ownership and toll exposure by
presenting neighborhood-level averages in 2014 and 2017. The panels indicate (1) a
growth in both outcomes over time and (2) a high degree of spatial correlation, in
particular around the main cities.

One concern is that there is spurious correlation between toll payments and EVs:
i.e., that tolls are more common in areas where the share of EV owners would be
high for other reasons. To test this, we run linear regressions on EV ownership with
a varying degree of fixed effects. Results are displayed in Table B.5. The coefficients
on toll payments are remarkably similar between specifications, indicating that the
within-neighborhood variation in tolls has a similar impact on EV ownership as toll
variation across Municipalities.

Table B.5: Effect of tolls on EV ownership, 2017

(1) (1) (1)
Toll (NOK per worktrip) 0.00124∗∗∗ 0.00105∗∗∗ 0.000964∗∗∗

(0.00000816) (0.00000849) (0.00000874)
Work distance (kms) -0.000439∗∗∗ -0.000295∗∗∗ -0.000259∗∗∗

(0.0000106) (0.0000108) (0.0000110)
Household income (log) 0.00698∗∗∗ 0.00672∗∗∗ 0.00670∗∗∗

(0.000156) (0.000156) (0.000159)
Employment (dummy) 0.0491∗∗∗ 0.0516∗∗∗ 0.0501∗∗∗

(0.000534) (0.000534) (0.000538)
Age (years) -0.000167∗∗∗ -0.000131∗∗∗ -0.000182∗∗∗

(0.00000856) (0.00000856) (0.00000875)
Couple (dummy) 0.0186∗∗∗ 0.0187∗∗∗ 0.0159∗∗∗

(0.000352) (0.000351) (0.000355)
City (dummy) -0.00657∗∗∗

(0.000376)
Work in city (dummy) 0.0447∗∗∗ 0.0333∗∗∗ 0.0301∗∗∗

(0.000674) (0.000695) (0.000704)

Municipality FE: X
Neighborhood FE: X
Observations: 2,169,769 2,169,747 2,169,585

* p<0.10, ** p<0.05, *** p<0.01. Robust standard errors in parentheses.
Notes: Dependent variable is whether a household owns an EV (0/1). Income and toll
payments are measured in 2015-kroners. Note that the city dummy will be absorbed by
the fixed effects, and that Municipality level fixed effects will be absorbed by neighbor-
hood level fixed effects as neighborhoods never cross Municipality borders.
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Figure B.5: Geographical variation in EV share and toll exposure

Notes: Left panels display share of households that owns EVs by neighborhood, while
right panels display average neighborhood-level toll exposure where tolls are measured in
2015 kroners for a one-way work trip. Top panels are 2014, while bottom panels are 2017.
Note that the scale of all panels are different. For confidentiality reasons, neighborhoods
with less than 50 households have their values replaced by the Municipality level average.
Note that densely populated areas where EV ownership and toll exposure tends to be
higher have neighborhoods too small to be visible on the maps.

70



C Mathematical Appendix

C.1 Complementarities

Proposition: In the logit model with binary demand, D = {0, j, k, (j, k)}, the two
goods are Hicksian complements if and only if Γ > 0.

Proof: Expected demand is Qj = Pr(j) + Pr(j, k), and
∂Qj

∂Uk
= Pr(j)

∂Uj
∂Uk
−
∑
d∈D

Pr(d)∂Ud
∂Uk

+ Pr(j, k)
∂Ujk
∂Uk

−
∑
d∈D

Pr(d)∂Ud
∂Uk


= Pr(j, k) Pr(0)− Pr(j) Pr(k), (13)

since ∑d∈D Pr(d)∂Ud

∂Uk
= Pr(k) + Pr(j, k).

Next, we leverage the logit choice probability functional form,

Pr(d) = exp(Ud)
1 + exp(Uj) + exp(Uk) + exp(Uj + Uk + Γ) ,

in writing
∂Qj

∂Uk
> 0

⇔ Pr(j, k) Pr(0) > Pr(j) Pr(k)

⇔ Pr(j, k)
Pr(0) >

Pr(j)
Pr(0)

Pr(k)
Pr(0)

exp(Uk + Uj + Γ) > exp(Uk) exp(Uj)

Γ > 0. �

Proposition: In the binary model, C.2 holds if and only if C.3 holds.

Proof: Note first, that D = {0, j, k, (j, k)}. From (13), we see that
∂Qj

∂Uk
= Pr(j, k) Pr(0)− Pr(j) Pr(k),

so Hicksian complementarity (C.3) holds iff.

Pr(j, k) Pr(0) > Pr(j) Pr(k)

⇔ sjks0 > sjsk,

where sd denotes the share of households choosing d ∈ D. Next, note that the
Correlation Criterion (C.2) can be written as

sjk
sjk + sk

> sjk + sj

⇔ sjk > sjsk + sjk(sk + sj + sjk)

⇔ s0sjk > sjsk.

since s0 + sj + sk + sjk = 1. �
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Proposition: In the model with binary demand, D = {0, j, k, (j, k)}, the cross-
derivative of demand is

∂Qj

∂Uk
= Pr(j, k)−QjQk.

Proof:
∂Qj

∂Uk
= Pr(j)

∂Uj
∂Uk
−
∑
d∈D

Pr(d)∂Ud
∂Uk

+ Pr(j, k)
∂Ujk
∂Uk

−
∑
d∈D

Pr(d)∂Ud
∂Uk


= Pr(j, k)− [Pr(j) + Pr(j, k)] [Pr(k) + Pr(j, k)]

= Pr(j, k)−QjQk. �

Proposition: In the full model with symmetric bundles, D = {0, j, k, (j, k), (j, j), (k, k)},
the cross-derivative of demand is

∂Qj

∂Uk
= Pr(j, k)−QjQk.

Proof: Using the definition of Qj,
∂Qj

∂Uk
= ∂

∂Uk
[Pr(j) + Pr(j, k) + 2 Pr(j, j)]

= Pr(j)
[
0− ∂Λ

∂Uk

]
+ Pr(j, k)

[
1− ∂Λ

∂Uk

]
+ 2 Pr(j, j)

[
1− ∂Λ

∂Uk

]

= Pr(j, k)−Qj
∂Λ
∂Uk

,

where Λ is the logsum,

Λ ≡ log
[
1 + exp(Uj) + exp(Uk) + exp(Uj + Uk + Γjk)

+ exp(2Uj + Γjj) + exp(2Uk + Γkk)
]
.

Now all that remains is to show that ∂Λ
∂Uk

= Qk:
∂Λ
∂Uk

= Pr(k) + Pr(j, k) + 2 Pr(k, k)

= Qk. �

C.2 Estimation

In this section, we describe details relating to our econometric estimator. Specif-
ically, how we match the sub-periods (where our model predicts driving) to the
driving periods (where we observe driving), and how we conduct inference.

First, it is useful to consider an example to fix ideas. Suppose a household buys
a car in July of 2015, then adds a second car to its portfolio in July of 2016, before
the first car has an inspection in July of 2017. Focus on the first car: its driving
period covers two years, composed of two sub-periods: the first sub-period (2015-06
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to 2016-06) covers 50% of the driving period and the owner is a one-car household.
The second sub-period (2016-06 to 2017-06) also covers 50% but the owner is now
a two-car household. Our predicted total for the driving period is 50% times the
one-car driving plus 50% times the prediction from the two-car household.

Formally, let t ∈ {1, ..., T} denote driving periods, and st ∈ {1, ..., St} denote
sub-periods, where wts denotes the fraction of period t covered by sub-period s, i.e.∑St
s=1wts = 1 for all t. We have on average 1

T

∑T
t=1 St = 2.2 sub-periods per driving

period. During a sub-period, we can identify a unique household, i, with a stable car
portfolio, di, throughout. Let x∗ts(θ) denote the predicted driving for that household,
given model parameters θ. The vector of demographics, zi, are weighted averages of
the years covered by the sub-period, and car attributes, qdi

, are taken directly from
the car without aggregating to the 20-type level (so we have more variation in car
attributes in the driving sub-likelihood than in the discrete choice sub-likelihood).

The normality assumption that we make is thus

xdata
t = ∑S

s=1wtsx
∗
tst

(θ) + ηt, ηi ∼ IIDN (0, σ2
x).

Thus, the likelihood contribution from driving period t is

log 1
σx
φ

(
xdata
t −∑S

s=1wtsx
∗
ts(θ)

σx

)
.

The full likelihood function thus becomes

L(θ) = 1
N

N∑
i=1

log Pr(di|θ)−
1
T

1
2

T∑
t=1

(
xdata
t −∑St

s=1wtsx
∗
ts(θ)

σx

)2

− log σx.

Next, we are faced with the issue that we use a different number of observations
in our ownership dataset (N = 52, 739) and driving dataset (T = 2, 588, 591).
The number of discrete choice observations is set low for computational reasons,
but we choose to retain more observations for the driving sub-likelihood, which is
computationally inexpensive. We could have reduced T to be the same observations
that we have discrete choices for in order to use standard inference. Instead, we opt
to add additional driving observations for increased precision, but conduct inference
based on the lower of the two observation counts, N , to be conservative.

Thus, we estimate standard errors using the following “Sandwich” formula:

Cov(θ̂) = 1
N
A−1BA−1, (14)

A =
N∑
i=1
∇`i(θ)′∇`i(θ),

B =
N∑
i=1
∇2`i(θ),

`i = log Pr(di|θ)−
1
T

1
2

T∑
t=1

(
xdata
t −∑St

s=1wtsx
∗
ts(θ)

σx

)2

− log σx.
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D Additional results

Figure D.1: Fit of driving for 1-car households
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Notes: This figure displays average driving per day for one-car households by deciles
of car attributes and household characteristics. x-axes also denote averages within each
decile. The fit is evaluated on the full 100% driving sample.
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Figure D.2: Car characteristics by income and work distance
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Figure D.3: Number of cars over time
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Figure D.4: Car ownership by car type
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Table D.1: Cross-price elasticities, 2017

Small g
asoline, new

small d
iesel, n

ew

Large gasoline, new

Large diesel, n
ew

Small g
asoline, 1-4 years

small d
iesel, 1

-4 years

Large gasoline, 1-4 years

Large diesel, 1
-4 years

Small g
asoline, 5-11 years

small d
iesel, 5

-11 years

Large gasoline, 5-11 years

Large diesel, 5
-11 years

Small g
asoline, 12-25 years

small d
iesel, 1

2-25 years

Large gasoline, 12-25 years

Large diesel, 1
2-25 years

Small e
lectric

, new

small e
lectric

, used

Large electric
, new

Large electric
, used

Small gasoline, new

small diesel, new

Large gasoline, new

Large diesel, new

Small gasoline, 1-4 years

small diesel, 1-4 years

Large gasoline, 1-4 years

Large diesel, 1-4 years

Small gasoline, 5-11 years

small diesel, 5-11 years

Large gasoline, 5-11 years

Large diesel, 5-11 years

Small gasoline, 12-25 years

small diesel, 12-25 years

Large gasoline, 12-25 years

Large diesel, 12-25 years

Small electric, new

small electric, used

Large electric, new

Large electric, used

Outside option

-1.72

-2.25

-3.01

-3.48

-1.14

-1.54

-1.93

-1.48

-3.83

-1.98

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.02

0.01

0.02

0.01
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0.02

0.01

0.03

0.02
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0.01
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0.01
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0.03
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0.03

0.01
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0.01

0.00

0.02
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0.04

0.02

0.02

0.02

0.02

-0.83

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02
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0.02

0.02

0.04

0.04

0.04

0.04

0.04

0.03

0.04

0.04

0.03

0.04

0.04

0.04

0.03

0.03

0.03

0.03

0.02

0.02

0.03

0.03

0.06

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03
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0.03
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0.05
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0.05
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0.05

0.05

0.05
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0.04

0.04

0.04

0.02

0.02

0.04

0.04

0.08

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

-0.34
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0.02
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0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03
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0.06
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-0.85
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0.05

0.05
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0.03

0.05

0.05
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0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

-0.10

0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.01
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0.01

0.01
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0.01

-0.22

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

-0.21

0.01

0.01

0.01

0.01

0.01

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-0.32

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.00

0.00

0.00

0.01

0.00

0.01

0.00

0.01

0.01

0.01

0.00

0.01

-0.83

0.01

0.01

0.01

0.00

0.00
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0

Notes: The matrix displays the price elasticity of demand for the alternative in the jth
row, Qij from Equation (2), when the price of the car in the kth column is increased by
one percent.
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Table D.2: Share of households with negative cross-price elasticity, 2017

Small g
asoline, new

small d
iesel, n

ew

Large gasoline, new

Large diesel, n
ew
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asoline, 1-4 years
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iesel, 1

-4 years

Large gasoline, 1-4 years
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-4 years
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1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.1

1.0

1.0

2.1

1.2

1.3

1.2

5.2

5.9

2.1

2.3

0.0

1.6

2.5

4.2

5.0

1.2

1.9

2.1

3.4

1.0

1.4

1.2

2.1

1.0

0.8

1.0

1.5

1.5

3.8

3.2

0.0

1.1

1.3

1.4

1.5

1.0

1.2

1.2

1.3

1.0

1.1

1.0

1.2

1.0

0.9

1.0

2.6

2.7

2.6

2.5

0.0

1.2

1.4

2.0

2.2

1.1

1.3

1.4

1.7

0.9

1.1

1.1

1.3

0.8

0.9

1.0

1.5

1.5

2.4

2.2

0.0

1.1

1.2

1.3

1.4

1.0

1.1

1.1

1.3

1.0

1.1

1.0

1.2

1.0

1.0

1.0

2.8

3.1

2.5

2.5

0.0

3.3

6.0

6.6

11.8

2.6

4.9

4.1

7.8

2.0

3.9

2.5

5.2

1.5

2.6

1.5

2.8

2.6

3.3

3.1

0.0

3.6

6.9

7.8

2.8

5.6

4.6

9.5

2.0

4.2

2.7

5.9

1.5

2.7

1.5

3.1

2.6

3.6

3.3

0.0

1.9

2.1

2.0

2.3

1.9

2.1

1.9

2.2

2.1

2.2

1.8

2.1

3.8

2.6

2.4

2.5

3.3

3.6

2.0

0.4

2.0

2.4

2.3

2.6

2.0

2.3

2.0

2.5

2.0

2.3

1.9

2.3

3.2

2.5

2.2

2.5

3.1

3.3

2.0

0.0

16.4

16.4

0

2

4

6

8

10

12

14

16

NaN

Notes: The matrix displays the share of households where the cross-price elasticity of
demand ∂Q

ij/∂pk is negative for the alternative in the jth row when the price of the car
in the kth column is increased, where Qij is given in Equation (2).
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Table D.3: Average kms/day per car as function of car portfolio, 2017.

None

Small g
asoline, new

small d
iesel, n

ew

Large gasoline, new

Large diesel, n
ew

Small g
asoline, 1-4 years

small d
iesel, 1

-4 years

Large gasoline, 1-4 years

Large diesel, 1
-4 years

Small g
asoline, 5-11 years

small d
iesel, 5

-11 years

Large gasoline, 5-11 years

Large diesel, 5
-11 years

Small g
asoline, 12-25 years

small d
iesel, 1

2-25 years

Large gasoline, 12-25 years

Large diesel, 1
2-25 years

Small e
lectric

, new

small e
lectric

, used

Large electric
, new

Large electric
, used

Small gasoline, new

small diesel, new

Large gasoline, new

Large diesel, new

Small gasoline, 1-4 years

small diesel, 1-4 years

Large gasoline, 1-4 years

Large diesel, 1-4 years

Small gasoline, 5-11 years

small diesel, 5-11 years

Large gasoline, 5-11 years

Large diesel, 5-11 years

Small gasoline, 12-25 years

small diesel, 12-25 years

Large gasoline, 12-25 years

Large diesel, 12-25 years

Small electric, new

small electric, used

Large electric, new

Large electric, used

37.2

34.4

39.7

30.1

41.3

34.7

20.9

34.9

25.9

37.5

41.5

40.4

35.1

41.2

32.6

41.6

37.2

28.9

38.6

32.9

42.3

20.9

33.1

25.3

35.3

38.8

37.9

33.8

42.0

39.9

31.3

40.4

36.0

27.7

37.4

31.7

41.0

19.7

31.8

24.0

34.1

37.6

36.6

34.2

42.3

40.3

31.7

40.7

36.3

28.0

37.7

32.0

41.3

20.0

32.1

24.4

34.4

37.9

36.9

33.2

41.4

39.3

30.7

39.7

35.4

27.1

36.7

31.0

40.4

19.1

31.2

23.4

33.4

36.9

36.0

35.5

41.6

33.0

42.0

37.6

29.3

39.0

33.3

42.6

21.3

33.5

25.7

35.7

39.2

38.3

34.1

42.3

40.2

31.6

40.6

36.2

27.9

37.6

31.9

41.3

19.9

32.1

24.3

34.3

37.8

36.9

34.8

40.9

32.3

41.3

36.9

28.6

38.3

32.6

41.9

20.6

32.7

25.0

35.0

38.5

37.5

33.5

41.7

39.6

31.0

40.0

35.7

27.4

37.0

31.3

40.7

19.4

31.5

23.7

33.8

37.3

36.3

36.0

42.1

33.5

42.6

38.2

29.9

39.6

33.9

21.9

34.0

26.2

36.3

39.8

38.8

34.6

42.7

40.7

32.1

41.1

36.7

28.4

38.1

32.4

41.7

20.4

32.5

24.8

34.8

38.3

37.3

35.4

41.5

32.9

41.9

37.6

29.3

38.9

33.2

42.6

21.3

33.4

25.6

35.7

39.2

38.2

34.0

42.2

40.1

31.5

40.5

36.1

27.8

37.5

31.8

41.2

19.8

32.0

24.2

34.2

37.7

36.8

37.3

34.8

39.4

31.1

40.8

35.1

23.1

35.2

27.5

37.5

41.0

40.1

35.4

41.5

32.9

41.9

37.5

29.3

38.9

33.2

42.6

21.3

33.4

25.6

35.6

39.1

38.2

36.6

42.7

34.1

38.7

30.5

40.1

34.4

22.4

34.6

26.8

36.8

40.3

39.4

35.1

41.2

32.6

41.6

37.2

28.9

38.6

32.9

42.2

20.9

33.0

25.3

35.3

38.8

37.8

34.5

42.7

40.6

32.0

41.0

36.7

28.4

38.0

32.3

41.7

20.4

32.5

24.7

34.8

38.2

37.3

34.7

40.8

32.2

41.2

36.8

28.5

38.2

32.5

41.8

20.5

32.6

24.9

34.9

38.4

37.5

33.3

41.5

39.4

30.8

39.8

35.4

27.1

36.8

31.1

40.5

19.1

31.3

23.5

33.5

37.0

36.1

33.5

41.7

39.6

31.0

40.1

35.7

27.4

37.0

31.4

40.7

19.4

31.5

23.7

33.8

37.3

36.3

46.7

44.3

51.4

44.8

49.0

45.5

50.7

49.0

43.3

47.3

45.3

46.8

45.3

46.1

44.0

45.5

44.0

46.4

44.3

45.9

44.3

45.5

43.4

44.9

43.4

43.7

47.7

45.7

47.2

45.6

46.3

44.3

45.8

44.3

42.9

47.0

44.9

46.5

44.9

45.8

43.7

45.2

43.7

44.2

48.3

46.2

43.2

47.7

46.2

46.8

44.7

46.3

44.7

43.6

47.7

45.6

47.1

45.6

46.2

44.2

45.7

44.2

45.5

43.4

49.5

43.8

47.5

44.4

49.0

47.4

43.6

47.7

45.6

47.1

45.6

44.8

48.8

43.1

46.8

43.8

48.3

46.8

43.2

47.3

45.2

46.8

45.2

46.8

44.7

46.2

44.7

42.8

46.9

44.8

46.4

44.8

45.5

43.5

45.0

43.5

45.8

43.7

45.2

43.7 20

25

30

35

40

45

50

Notes: The matrix displays average driving (kms/day) for the car in the jth row, when
it is combined in a portfolio with the car in the kth column. The first column displays
average driving for one-car households. Averages across households are unconditional on
choice probabilities, meaning that households receive equal weight even though some are
unlikely to end up with a particular car portfolio.
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Table D.4: Parameter Estimates, No Portfolio Effects
Demographics: Driving (αz) Outside option (ωz) Utility of money (γz)
ln(household income) 0.00767 (8.67) -0.612 (-2.62) -0.636 (-8.57)
work distance (kms) 0.000652 (5.10) -0.00102 (-1.88) 0.0104 (1.61)
age (avg) -0.00112 (-6.11) -0.0100 (-1.41) -0.0240 (-3.48)
1 {city} -0.0346 (-2.66) 0.271 (0.965) -0.416 (-1.69)
1 {couple} 0.0190 (3.68) 0.266 (1.49) -0.329 (-1.77)
cons 0.0233 (3.69) 6.85 (2.44) 11.3 (13.6)
Car attributes: Driving (αq) Car ownership (ξq) Portfolio shifting (Γ4)
car age 0.00118 ( 1.86) 0.297 (10.6) 0.00 -
car age2 -0.000282 ( -4.67) -0.00651 (-2.75) 0.00 -
engine effect (100 kW) 0.0127 ( 1.47) 4.30 (9.07) 0.00 -
engine effect× 1 {EV} -0.0213 ( -6.16) -3.25 (-11.4) 0.00 -
total weight (tonnes) 0.145 ( 34.8) -9.12 (-25.5) 0.00 -
1 {diesel} 0.0317 ( 1.65) -0.791 (-0.955) 0.00 -
1 {EV} 0.0896 ( 7.96) -3.44 (-7.85) 0.00 -

Other variables Portfolio effects
Range by work distance (ϕ1ij) 4.61e-05 ( 3.24) Ownership satiation (Γ1) 0.00 -
Local EV incentives (ϕ2ij) 1.75 ( 8.06) Range anxiety (Γ2) 0.00 -
Driving squared (α2) -0.00331 ( -16.1) Driving satiation ( Γ3) 0.00 -
S.D. of error term, driving (σx) 29.7 ( 201.3) Driving substitution (Γ5) 0.00 -
Realised toll payment share (θtoll) 0.388 ( 0.801)

Notes: These estimates are similar to those in Table 4, except that that portfolio effects
are disabled by forcing Γijk = 0. This forces 11 parameters to zero but the remaining
37 are still estimated. Parentheses show the t-statistics corresponding to each parameter
value using the standard errors from the Sandwich formula in equation (14). The results
are based on a random sub-sample of N = 52, 739 discrete choice observations. The
driving dataset is a 30% random sample of all driving periods, yielding S = 2, 588, 591
odometer readings.
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Table D.5: Counterfactual simulations, two-car model without portfolio effects

(1) (2) (3)
Exogenous policy variables

Targeted segment EV CV CV
Tax instrument Purchase Fuel Purchase
Effect on consumer price -20.0% +2.06% +1.62%

Welfare effects (annual, per household)
∆CO2 (kg) -10.966 -10.716 -10.176
∆Consumer surplus (NOK) 159.014 -228.425 -342.170
∆Taxes (NOK) -316.820 177.989 117.153
∆Local externalities (NOK) 27.026 -42.022 -56.905
Abatement cost (NOK per kg CO2) -16.856 -0.785 -16.520

Number of cars
Cars 3,636.3 -6,633.1 -8,817.5
– EV 13,199.5 361.6 484.4
– ICEV -9,562.9 -6,994.6 -9,301.9

Households by Portfolio Choice
No car -1,674.3 3,146.6 4,096.5
EV 4,562.2 185.3 253.6
EV,EV 166.6 6.6 8.5
ICEV -4,850.3 154.6 370.9
ICEV,ICEV -6,508.4 -3,656.2 -4,943.3
ICEV,EV 8,304.2 163.1 213.8

Driving (expected average percentage changes)
Total driving 0.235 -0.377 -0.494
EV driving 36.479 0.741 0.983
Diesel driving –0.494 -0.444 -0.706
Gasoline driving -0.414 -0.358 -0.310

Note: See Table 7 – the difference is that these results are based on the model with
Γijk = 0 (estimates are in Table D.4).
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